L’établissement de Pratz le Curtillet
David Billoin, Marion Berranger, Manon Cabanis, Benoît Clavel, Jean Cayrol, Christophe Dunikowski, Tatjana M. Gluhak, Corinne Goy, Sylviane Humbert, Luc Jaccottey, et al.

To cite this version:
David Billoin, Marion Berranger, Manon Cabanis, Benoît Clavel, Jean Cayrol, et al.. L’établissement de Pratz le Curtillet : Un domaine mérovingien dans les hautes terres jurassiennes (fin VIe-VIIe siècle). Inrap. CNRS Éditions, 310 p., 2016, Recherches archéologiques 10, 978-2-271-08262-6. hal-02097832

HAL Id: hal-02097832
https://hal-inrap.archives-ouvertes.fr/hal-02097832
Submitted on 12 Apr 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Copyright
L’établissement de Pratz le Curtillet

Un domaine mérovingien dans les hautes terres jurassiennes (fin vi°-vii° siècle)

Parmi les tout premiers habitats du haut Moyen Âge étudiés en Franche-Comté, l’établissement de Pratz le Curtillet se distingue par son implantation dans les hautes terres jurassiennes, longtemps réputées comme reculées et inhospitalières. L’envergure des travaux archéologiques sur les 16 hectares explorés du plateau du Lizon et la qualité des vestiges font aujourd’hui encore exception. Un imposant édifice en pierre de 16 m sur 13 flanqué d’une annexe constitue la partie résidentielle du domaine, tout en abritant fourrage et bétail, alors que le second bâtiment accueille une forge. Les équipements domestiques et artisanaux livrent une ample documentation sur les conditions de vie de cette petite communauté de statut élevé, lié à son implication dans l’économie du fer. Les études engagées à différentes échelles dans un territoire où s’installe une communauté monastique parmi les plus précoces de Gaule, non loin d’un itinéraire de franchissement du massif, contribuent à poser de précieux jalons pour cette période.

David Billoin, archéologue à l’Inrap, est rattaché à l’UMR 5140 Archéologie des Sociétés Méditerranéennes de l’université Paul-Valéry Montpellier 3. Spécialiste de l’habitat perché et du peuplement entre Antiquité tardive et haut Moyen Âge, il a publié de nombreux articles et contribue à plusieurs projets collectifs de recherches sur l’époque mérovingienne.
L’établissement de Pratz le Curtillet
Un domaine mérovingien dans les hautes terres jurassiennes (fin VIe-VIIe siècle)
La collection « Recherches archéologiques » publie, à destination de la communauté scientifique, des monographies et des synthèses issues d’opérations d’archéologie préventive menées par l’Institut national de recherches archéologiques préventives. Ces travaux se distinguent par le caractère majeur des sites étudiés, leur aspect novateur, en termes méthodologiques ou scientifiques, ou encore l’ampleur du territoire pris en compte.

Comité éditorial
Anne Augereau (Inrap), Armelle Clorennec (Inrap), Dominique Garcia (Inrap), Jean-Pierre Giraud (ministère de la Culture et de la Communication), Mark Guillon (Inrap), Théresia Duvernay (Inrap), Marc Célié (Inrap), un représentant de CNRS Éditions.

Comité de lecture
Véronique Abel (Inrap), Reginald Auger (université Laval de Montréal), Marie-Christine Bailly-Maitre (CNRS), Jean-François Berger (CNRS), Geertrui Blancquaert (SRA Champagne-Ardenne), Élise Boucharat (ministère de la Culture et de la Communication), Françoise Bostyn (Inrap), Jean Bourgeois (université de Gand), Dominique Castex (CNRS), André Delpuech (musée du Quai-Branly), Matthieu Honegger (université de Neuchâtel), Gilbert Kaenel (université de Lausanne), Jacques Jaubert (université Bordeaux I), Florence Journot (université Paris I), Sophie Liegard (département de l’Allier), Foni Le Brun-Ricalens (Musée du Luxembourg), Élisabeth Lorans (université de Rouen), Claude Mordant (université de Bourgogne), Claude Raynaud (CNRS), Gilles Sauron (université Paris IV), Stéphane Sindonino (Inrap), Marc Talon (Inrap), Jacques Tarrête, Laurence Tranoy (université de La Rochelle), Boris Valentin (université Paris I), Christian Verjux (SRA Centre), Eugène Warmenbol (université libre de Bruxelles).

Inrap
Dominique Garcia, président exécutif
Daniel Guérin, directeur général délégué
Patrick Pion, directeur scientifique et technique
Théresia Duvernay, directrice du développement culturel et de la communication

Direction éditoriale
Armelle Clorennec, Inrap

Secrétariat d’édition
Sandra Lumbroso

Mise au net des figures et mise en page
Virginie Teillet
<table>
<thead>
<tr>
<th>Sommaire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auteurs .. 6</td>
</tr>
<tr>
<td>Remerciements .. 7</td>
</tr>
<tr>
<td>Préface .. 9</td>
</tr>
<tr>
<td>CHAPITRE 1 - INTRODUCTION ... 13</td>
</tr>
<tr>
<td>Historique de l’opération et méthodologie ... 15</td>
</tr>
<tr>
<td>Le massif du Jura : approche géographique et géomorphologique 19</td>
</tr>
<tr>
<td>La Haute Chaîne .. 20</td>
</tr>
<tr>
<td>Physionomie du site d’implantation de l’établissement mérovingien 23</td>
</tr>
<tr>
<td>Les données sur le peuplement de cette moyenne montagne 26</td>
</tr>
<tr>
<td>Les sources textuelles et toponymiques ... 32</td>
</tr>
<tr>
<td>CHAPITRE 2 - PRÉSENTATION GÉNÉRALE ... 35</td>
</tr>
<tr>
<td>Approches stratigraphique et géomorphologique 36</td>
</tr>
<tr>
<td>Une bonne connaissance topographique .. 36</td>
</tr>
<tr>
<td>L’abandon du site .. 38</td>
</tr>
<tr>
<td>Conclusion ... 39</td>
</tr>
<tr>
<td>Le bâtiment artisanal ... 39</td>
</tr>
<tr>
<td>La structure du bâtiment ... 39</td>
</tr>
<tr>
<td>L’aménagement intérieur ... 45</td>
</tr>
<tr>
<td>Les foyers ... 47</td>
</tr>
<tr>
<td>Une batterie de foyers sous l’appentis ... 47</td>
</tr>
<tr>
<td>Les autres foyers .. 49</td>
</tr>
<tr>
<td>La fonction des foyers .. 50</td>
</tr>
<tr>
<td>La fonction du bâtiment .. 51</td>
</tr>
<tr>
<td>Le mur de délimitation M.11-37 ... 51</td>
</tr>
<tr>
<td>Éléments de construction .. 51</td>
</tr>
<tr>
<td>La fonction du mur M.11-37 .. 53</td>
</tr>
<tr>
<td>Le bâtiment résidentiel .. 54</td>
</tr>
<tr>
<td>Les aménagements intérieurs .. 58</td>
</tr>
<tr>
<td>Les matériaux de construction .. 62</td>
</tr>
<tr>
<td>L’analyse comparative des bâtiments ... 62</td>
</tr>
<tr>
<td>L’édifice résidentiel ... 62</td>
</tr>
<tr>
<td>Hypothèses métrologiques .. 66</td>
</tr>
<tr>
<td>CHAPITRE 3 - LE MOBILIER ... 69</td>
</tr>
<tr>
<td>La répartition spatiale du mobilier .. 70</td>
</tr>
<tr>
<td>La vaisselle en terre ... 72</td>
</tr>
<tr>
<td>Présentation du lot ... 73</td>
</tr>
<tr>
<td>Les céramiques du haut Moyen Âge .. 75</td>
</tr>
</tbody>
</table>
L’établissement de Pratz le Curtillet

Analyses chimiques des céramiques ... 100
Caractérisation des céramiques ... 100
Recherche de l’origine de ces céramiques .. 104
Conclusion ... 108
La verrerie ... 109
Le verre du haut Moyen Âge ... 109
Le verre sur l’établissement de Pratz ... 109
Le verre à vitre ... 114
La perle ... 115
Conclusion ... 115
Analyses physicochimiques de verres plats découverts à Pratz et en Franche-Comté .. 115
Historique des recherches .. 115
Apports et limites des analyses physicochimiques : la problématique des verres plats ... 116
Le mobilier analysé ... 117
Caractérisation des verres plats .. 119
Conclusion ... 124
Les récipients en pierre ollaire ... 126
Origine de la matière première .. 127
Les récipients ... 127
La fonction des récipients ... 130
La chronologie ... 133
Les roches utilisées ... 134
L’analyse pétrographique des pierres ollaires .. 134
L’étude pétrographique .. 135
Descriptions pétrographiques des échantillons étudiés 135
Les traces de chauffage extrême .. 138
Conclusion ... 139
Identification de matières grasses animales dans des récipients en pierre ollaire ... 139
Corpus d’échantillons étudiés, mode de prélèvement et premières observations ... 140
Protocole de préparation et d’analyse des échantillons 141
Conclusion ... 144
Le mobilier métallique .. 145
Les catégories d’objets ... 145
Conclusion ... 157
Les aiguiseoirs ... 157
Le matériel de mouture .. 158
Nature et provenance des roches utilisées .. 160
Étude typologique ... 163
Remarques sur le matériel de mouture au début du Moyen Âge et comparaisons ... 170
Conclusion ... 172
Les vestiges osseux animaux .. 173
État de conservation .. 173
Dénombrement ... 174
Résultats ostéométriques ... 181
Conclusion ... 181
Culture et environnement: l’apport des macrorestes végétaux .. 182
L’échantillonnage et le corpus de prélèvements carpologiques .. 183
Traitement des prélèvements et détermination des macrorestes végétaux 183
Résultats et interprétation .. 184
La distribution spatiale de restes végétaux .. 190
Conclusion .. 191
L’étude anthracologique .. 193
Protocoles d’analyse .. 193
Présentation du corpus et résultats .. 194
Conclusion .. 200

CHAPITRE 4 - LA MÉTALLURGIE .. 201
Réduction et forge en Franche-Comté à la fin de l’Antiquité et pendant la période mérovingienne 201
La réduction du minerai .. 201
La forge ... 205
Conclusion .. 206
Les activités métallurgiques de Pratz: étude interdisciplinaire des déchets .. 207
La chaîne opératoire de la fabrication du fer: aspects méthodologiques 208
Étude macroscopique des déchets scorifiés .. 209
Répartition spatiale des déchets ... 217
Résultats des études métallographiques .. 218
Résultat des analyses par objet .. 219
Conclusion .. 227
Le travail des autres métaux ... 230

CHAPITRE 5 - SYNTHÈSE GÉNÉRALE .. 233
Organisation et implantation de l’établissement ... 233
La chronologie de l’occupation et le mobilier ... 237
Cultures, élevage et paysage .. 239
Les activités métallurgiques: une ruée sur le fer ... 240
Bâtir en pierre: une spécificité du Jura? .. 242
Voies de circulation, voies commerciales .. 247
Le statut social de l’établissement ... 248

CHAPITRE 6 - LA VIE DES PÈRES DU JURA .. 253
Résumé du récit ... 253
Environnement et mise en culture du territoire ... 254
Construction et mobilier ... 256
Alimentation et vaisselle ... 257
Habillement et objets de la vie quotidienne .. 258
Conclusion .. 259

BIBLIOGRAPHIE GÉNÉRALE ... 265
Auteurs

David Billoin, Inrap, Archéologie des Sociétés Méditéranéennes – UMR 5140, Université Paul-Valéry Montpellier 3, CNRS-Culture
Marion Berranger, Laboratoire Métallurgies et Cultures – UMR 5060, CNRS – IRAMAT
Manon Cabanis, Inrap
Benoît Clavel, CNRS/CRAVO – UMR 7209, MNHN
Jean Cayrol, Inrap
Christophe Dunikowski, Inrap, Laboratoire Métallurgies et Cultures – UMR 5060
Tatjana Gluhak, Johannes Gutenberg- Universität, Mainz
Corinne Goy, Inrap, Laboratoire ARTéHIS – UMR 6298, Université de Bourgogne, CNRS-Culture
Sylviane Humbert, Inrap
Luc Jaccottey, Inrap, Laboratoire Chrono-Environnement – UMR 6249, Besançon
Ildiko Katona-Serneels, Université de Fribourg, Suisse
Juliette Langlois, C2RMF, UMR 171, CNRS, MCC, Palais du Louvre
Hervé Laurent, Service régional de l’archéologie de Franche-Comté, Laboratoire Métallurgies et Cultures – UMR 5060
Annabelle Milleville, Laboratoire Chrono-Environnement – UMR 6249, Besançon
Vincent Mougin, Service municipal de Besançon
Claudine Munier, Service municipal de Besançon
Inès Pactat, Université de Franche-Comté, MHS de Besançon
Jacqueline Pilet-Lemière, Centre de Recherches historiques et archéologiques, Université de Caen, UMR 6277, CNRS
Martine Regert, CEPAM – UMR 6130, Université Nice Sophia Antipolis, CNRS
Sylvain Rotillon, Direction départementale des territoires de l’Essonne
Anne Schmitt, Laboratoire de céramologie de Lyon, Archéométrie et archéologie – UMR 5138
Valérie Thirion-Merle, Laboratoire de céramologie de Lyon, Archéométrie et archéologie – UMR 5138
Julian Wiethold, Laboratoire ARTéHIS – UMR 6298, Université de Bourgogne, CNRS-Culture
Remerciements

L'étude et la publication de l'établissement mérovingien de Pratz me tenaient à cœur pour plusieurs raisons: d'abord parce qu'il s'agit de l'un des tout premiers habitats de cette période fouillé en Franche-Comté, original sur bien des points, et qu'à ce titre, il méritait d'être publié. Bien que présenté de manière très synthétique dans le cadre d'un colloque, la publication d'un tel site s'imposait naturellement, cette étape étant la finalité de notre travail d'archéologue au quotidien, une étape à part entière et indissociable du premier coup de truelle donné sur le terrain. Certes, il aura fallu une certaine ténacité pour conduire ce travail, mais il est satisfaisant de constater que lorsque les diverses institutions vont dans le même sens, celui de l'intérêt commun, les projets aboutissent. Les recherches conduites sur l’établissement mérovingien de Pratz ont bénéficié d’un investissement important, tant pour les deux tranches de fouilles, que pour les études qui ont suivi. Toutes les personnes qui ont contribué à ce travail ont notre reconnaissance, à commencer par l’équipe de fouille: Jean Cayrol, Corinne Goy, Yves Damelincourt, Christophe Dunikowski, Stéphane Guyot, Sylvain Rotillon, Jean-Marc Violot, pour la qualité de son travail, l'enthousiasme et la disponibilité dont chacun a fait preuve et les différents chercheurs engagés dans ce travail qui n’ont pas ménagé leur temps ni leurs conseils dans des discussions enrichissantes.

La réalisation des phases d’étude n’auraient pas été possibles sans le soutien de la Drac-Service régional de l’archéologie de Franche-Comté pour le financement, en premier lieu de Christophe Cupillard en charge du département du Jura et du suivi administratif et scientifique du dossier, pour sa confiance et son aide précieuse lors du montage des opérations et les phases de déroulement des fouilles; de Bruno Bréart, alors conservateur de ce service et de Marie-Agnès Gaidon-Bunuel, conservatrice régionale depuis 2011.

Nos remerciements vont au service de la Direction scientifique et technique de l’Inrap pour l’investissement de jours versés à la préparation de la publication réalisée dans le cadre des Projets d’Activités Scientifiques (20 jours); à l’équipe du Musée d’archéologie du Jura de Lons-le-Saunier avec Marie-Jeanne Lambert, Jean-Luc Mordefroid comme directeur successif, et Sylvie Loudeaux Julietti; et enfin la communauté de communes du plateau du Lizon pour son aide technique sur le terrain.

Je voudrais remercier tout particulièrement Élise Boucharlat d’avoir suivi ce travail de loin en loin, mais toujours avec un vif intérêt, de ses encouragements renouvelés (et appréciés), de ses conseils et de sa patience. La préface lui était donc réservée pour cette autre tranche de vie à la campagne jurassienne…

Ma gratitude va également à Joelle Burnouf, membre de la CIRA pour ses conseils et avis encourageants dès le terrain, notamment lors d’une visite sous une pluie torrentielle, ainsi qu’à Claude Raynaud (directeur de recherche au CNRS) pour ses avis CIRA lors de la demande d’aide à la publication, avec une mention spéciale pour ses remarques constructives et son travail de relecture du manuscrit, lourde tâche accomplie avec un soin critique et méticuleux qui m’ont enrichi personnellement autant que les textes.

Cette publication a également bénéficié des relectures de Laurent Verslype (professeur à l’Université Catholique de Louvain, Belgique), Corinne Goy et Sandra Lumbroso; Armelle Clorennec pour le suivi éditorial aussi chaleureux qu’efficace.

David Billoin
Préface

Au début des années 2000, lors de leur lancement sur le plateau du Lizon, dans les hautes terres jurassiennes, les fouilles archéologiques de l’établissement rural du Curtillet, sur les communes de Pratz et Lavans-lès-Saint-Claude, revêtaient l’aspect d’une recherche pionnière à plusieurs titres. Il s’agissait en effet de la première intervention archéologique d’envergure dans cette zone « reculée » que la tradition conduisait à considérer inhospitalière et donc peu susceptible d’abriter des vestiges antiques ; il s’agissait aussi de l’une des premières opérations consacrées, en Franche-Comté, à l’exploration exhaustive d’un site d’habitat du haut Moyen Âge. En outre, l’enquête, se trouvait reliée à des thèmes fondamentaux de l’histoire médiévale franc-comtoise. Car en s’élargissant à l’environnement naturel et humain du site, elle touchait un territoire qui s’enorgueillit d’avoir accueilli des communautés monastiques parmi les plus précoces de Gaule ; et parce qu’en mettant au jour des manifestations anciennes de la métallurgie du fer, elle s’intéressait à une activité placée, de haute date, au centre de l’histoire technologique et économique de la région.

La monographie du Curtillet, très attendue, nous parvient donc près de dix années après l’achèvement des fouilles dans la collection *Recherches archéologiques*, coéditée par l’Inrap et CNRS Éditions. Un tel délai résulte en partie des circonstances de la préparation du manuscrit puis de son édition. L’archéologie sait nous rappeler qu’il est quelquefois nécessaire de se hâter avec lenteur lorsqu’elle s’entoure de toutes les précautions préalables à la diffusion de ses résultats. Et pour faire bonne mesure, il faut rappeler l’envergure de l’entreprise : sur le terrain d’abord, avec 16 hectares explorés et 4 400 m² fouillés en aire ouverte en deux campagnes entre 1999 et 2006 ; après la fouille ensuite, avec la réunion de vingt-trois spécialistes autour de David Billoin, équipe nombreuse qui témoigne du volume et de la diversité des études réalisées comme de la rigueur apportée à l’analyse des vestiges immobiliers et mobiliers et à leur interprétation.

L’ouvrage s’attache à livrer l’intégralité des données recueillies sur l’établissement altomédiéval du Curtillet dont la double vocation, résidentielle et artisanale, renforce l’intérêt. Le lecteur suit le déroulement de la recherche selon les différentes échelles d’observation adoptées par les chercheurs. De la Haute Chaine jurassienne au plateau du Lizon, les caractères topographiques, géomorphologiques et stratigraphiques, minutieusement décrits, renseignent sur les conditions d’installation et de vie d’une petite communauté et alertent sur les difficultés de lecture des vestiges compte tenu de la nature du substrat karstique, de la faible épaisseur du recouvrement argileux et des phénomènes érosifs d’origine naturelle et anthropique. À une échelle plus réduite, celle de l’analyse des vestiges proprement dits, le lecteur apprécie comment la minutie des observations de terrain compense le handicap de la faiblesse sédimentaire et autorise un récit dynamique des événements, depuis l’installation jusqu’à l’enfouissement du site après son abandon et sa destruction. La démonstration d’une étape de reconnaissance et de préparation du socle rocheux avant la construction des bâtiments,
L’établissement de Pratz le Curtillet
dont l’emprise et les assises de fondation ont su tirer parti des avantages et des
contraintes du sous-sol, est particulièrement frappante. C’est cependant ce
substrat rocheux qui, en dépit des difficultés mentionnées plus haut, a favorisé la
richesse documentaire du site. Ainsi, parce qu’elles sont issues de constructions
aux élévations en pierre, les ruines avaient conservé suffisamment de substance
pour que la fouille des deux bâtiments qui composent l’établissement, distants
d’une soixantaine de mètres, de dimension et plan bien différents, mette au
jour les principes architecturaux, la mise en œuvre des matériaux et les amé-
nagements intérieurs et périphériques. D’ailleurs, des essais de reconstitution
architecturale en trois dimensions illustrent la richesse des informations recueillies
à Pratz dans un environnement favorable aux constructions maçonnées par
comparaison avec les secteurs où le bois est le matériau dominant.
L’adoption de méthodes rarement mises en œuvre dans ce type de contexte
(fouille planimétrique fine, carroyage métrique, localisation des mobiliers en
trois dimensions, prélèvements systématiques) et l’association sur le terrain d’un
géomorphologue et d’un paléométallurgiste a permis de recueillir un maximum
d’indices sur la nature des activités pratiquées dans les bâtiments et à leurs abords
immédiats. La découverte d’une belle série de foyers associée au petit bâtiment
rectangulaire avait, en effet, suscité très tôt l’hypothèse d’un atelier métallur-
gique ; or, on sait combien délicates sont les observations archéologiques dans
domaine pour départir fonctions domestique et artisanale, voire combinées
comme pour certains foyers ici, et pour établir, le cas échéant, à quelle étape de
la chaîne opératoire correspondent les vestiges anciens. C’était l’un des défis de
ces fouilles et il a été relevé de belle manière. Les méthodes mentionnées plus
haut ont également bénéficié à la reconnaissance du second bâtiment, plus vaste
et composite, dont la fonction résidentielle et agricole a pu être mise en avant.
La mise au jour dans deux de ses pièces d’équipements inédits, comme une sorte
de « potager » et une cavité karstique aménagée à des fins domestiques, mérite
d’être soulignée.
La part consacrée aux mobiliers est particulièrement développée dans cet
ouvrage auquel son maître d’œuvre a su associer toutes les compétences
requises. Au-delà de la constitution de référentiels typochronologiques à partir
de ce qui constituait, au moment de sa découverte, une collection encore inéga-
lée dans la région en contexte d’habitat altomédiéval, l’objectif est d’en extraire
tout ce qui peut renseigner sur les modes de vie et de subsistance de la petite
communauté installée là et les activités qu’elle pratiquait. Se déploie alors une
archéologie des rejets où la complémentarité des différents degrés d’observation
montre toute son efficacité. Pour commencer, la vision d’ensemble qu’offre la
répartition spatiale des artefacts est commentée avec précaution pour séparer ce
qui relève réellement de la fonction des espaces de ce qui résulte de divers pro-
cessus post-dépositionnels. L’étude des différentes catégories d’objets, quant à
elle, répond scrupuleusement aux standards de chaque spécialité. Par sa richesse
relative, le mobilier du Curtillet augmente de manière substantielle le répertoire
régional de l’équipement domestique du haut Moyen Âge pour la partie septen-
trionale de l’Arc jurassien : vaisselle de terre et de verre, vases en pierre ollaire,
objets métalliques, ainsi que quelques rares fragments de verre à vitre et l’attestation de plusieurs meules à bras. On soulignera que l’enquête
met également en jeu des analyses archéométriques poussées sur plusieurs séries
d’objets et de prélèvements : pâtes céramiques, verre plat, vases ollaires, outillage
lithique. Les arguments combinés de la typologie, de la physique, de la chimie
et de la pétrographie replacent Le Curtillet dans des circuits d’approvisionne-
ment qui, pour certains produits, dépassent largement les limites régionales.
Bien que portant sur des ensembles restreints, l’étude des vestiges animaux et végétaux a été conduite de manière aussi exhaustive que possible, considérant les résultats comme une pierre d’attente dans la perspective de données à venir sur les pratiques agropastorales et la gestion des ressources de ce secteur de moyenne montagne.

Avec une cinquantaine de kilos de déchets métalliques, l’établissement livre le premier atelier métallurgique de quelque importance reconnu en Franche-Comté pour la période mérovingienne. Dans cette région à la pointe de la recherche sur la métallurgie du fer, toutes les compétences étaient réunies pour en conduire une étude approfondie, sur le terrain et en laboratoire. L’étude spatiale des déchets de production, comme les observations macroscopiques et microscopiques, révèlent la nature exacte des étapes de travail pratiquées ici et caractérisent le rôle de cet atelier dans son contexte technologique et économique régional. Ainsi peut être envisagé un lien entre l’atelier du Curtillet, voué à l’épuration du métal brut et au forgeage du fer, et un ou des ateliers de réduction proches. Ce n’est, en effet, pas le moindre des intérêts de la contribution des paléométallurgistes que d’offrir au lecteur un état des connaissances actuelles dans un champ chronologique et géographique élargi pour mieux replacer les constats locaux dans l’histoire de la métallurgie du fer.

Le caractère isolé des deux bâtiments du Curtillet sur le plateau n’est pas facilement explicable, si ce n’est par la difficulté d’établir des locaux annexes et autres équipements en matériaux légers sur un sol résistant aux creusements. Du moins, son organisation générale laisse apercevoir une délimitation par un « murger » situé en contrebas du bâtiment artisanal et le long d’un cheminement, axe de circulation encore sensible sur le cadastre napoléonien. La proximité géographique et chronologique entre l’occupation du Curtillet et les monastères primitifs de Saint-Romain et Saint-Lupicin justifie que l’on prêtât une attention particulière à un texte auquel les archéologues et historiens font souvent allusion en raison des parallèles possibles entre les modes de vie des communautés religieuses, très concrètement décrites, et les sources archéologiques. L’auteur s’est donc attaché à considérer La vie des Pères du Jura dans son intégralité et à en faire ressortir les informations qui peuvent servir l’interprétation des vestiges du haut Moyen Âge.

Au total, les caractéristiques topographiques et architecturales de l’établissement du Curtillet se font jour avec un certain réalisme, tandis que les équipements artisanaux et domestiques livrent une ample documentation, en grande partie inédite pour la région. Le statut de ses occupants reste plus difficile à déterminer dans un secteur encore peu documenté. Toutefois, plusieurs indices matériels suggèrent un statut privilégié sans doute lié à l’implication de la communauté dans l’économie du fer. Comme souvent à l’issue d’une opération archéologique, nombre de questions restent posées et les auteurs formulent de manière objective. Mais ce sont les retombées d’une recherche conduite avec rigueur et constance, sous l’impulsion de David Billoin, dont il convient de se réjouir et d’en féliciter les acteurs. Dans la perspective des découvertes à venir, la publication de Pratz, Le Curtillet, constitue un solide jalon pour mieux comprendre l’organisation de l’occupation de cette partie septentrionale de l’Arc jurassien durant les premiers siècles du Moyen Âge.

Élise Bouchardat
Conservatrice générale du Patrimoine honoraire
Lyon, 29 février 2016
Les « hautes terres » jurassiennes sont restées, jusqu’à ces dernières années, largement méconnues du point de vue archéologique, s’accordant assez bien avec la vision historiographique encore prégnante d’un secteur géographique qui, comme d’autres en Franche-Comté, avait dû son développement à l’arrivée des moines défricheurs. Ce « désert » de la tradition hagiographique fut précisément choisi pour l’installation de l’une des plus précoces communautés monastiques de Gaule, ce que relate un document de tout premier ordre, la *Vita Patrum Jurassium*, rédigée au début du Ve siècle de notre ère. Ce texte, précieux par bien des côtés, témoigne de l’aspect sauvage et inhospitalier de cette région de montagne choisie par les moines cénobites. Le paysage actuel de ce massif ne paraît pas démentir ce constat, avec un couvert forestier en progression constante depuis les mutations culturales modernes qui privilégient l’agriculture intensive dans les plaines (fig. 1). Dans ces conditions et dans un secteur peu marqué par les grands travaux du fait des contraintes du relief, que pouvait-on attendre de l’archéologie ? Ces vastes étendues « blanches » de la carte archéologique du massif du Jura n’encourageaient-elles pas à se concentrer sur les secteurs à plus forte densité d’occupation ?

L’archéologie préventive de ces dernières décennies a fait voler en éclats cette image, révélant des traces d’occupation humaine dans bien des endroits où on ne les attendait pas. La découverte de l’établissement mérovingien de Pratz le Curtillet constitue l’un des exemples illustrant ces avancées de la recherche. L’opportunité d’ouvrir une fenêtre d’observation de 16 ha, par le biais d’un projet de zone artisanale, a permis d’investir les lieux et, peu à peu, de combler les lacunes concernant l’occupation ancienne de cette zone de montagne, participant de fait à renouveler notre regard. Pratz est également l’un des tout premiers habitats du haut Moyen Âge à être fouillé en Franche-Comté; cet établissement rural a ainsi donné l’occasion de « défricher » une période longtemps dominée de façon exclusive par l’archéologie funéraire.

L’équipe d’archéologues que j’ai eu grand plaisir à diriger sur cette opération a dû élaborer une stratégie de fouille donnant la priorité à l’analyse spatiale et à une lecture fine des vestiges, en réalité proche des méthodologies mises en œuvre par nos collègues et voisins sur le versant suisse du Jura, avec cependant des moyens sans commune mesure. Mais que l’on ne s’y trompe pas, replacée dans son contexte, cette opération n’a pas été réalisée dans l’urgence qui caractérise bien souvent l’archéologie de sauvetage, et l’investissement a été correct grâce à une bonne concertation associant, dès le début, le Service régional de l’archéologie de Franche-Comté, la Commission interrégionale de la recherche archéologique et le responsable de l’opération.
L’établissement de Pratz le Curtillet

Le présent ouvrage répond à un double objectif: documenter tout d’abord, de manière détaillée, les vestiges de cette occupation, et replacer ensuite ces données dans leur environnement de montagne. L’approche des hautes terres jurassiennes devait nécessairement positionner l’Homme dans ce contexte et dans la durée, afin de comprendre les effets réciproques du milieu naturel et de l’occupation. Il semblait aussi indispensable d’élaborer un référentiel sur les structures archéologiques et le mobilier, afin de poser les bases d’un travail typoarchéologique, en particulier pour la céramique du haut Moyen Âge, encore très mal connue à ce jour à l’échelle régionale. Le recours aux sciences naturelles s’est également imposé, afin d’alimenter les connaissances sur les échanges à travers un massif loin d’être imperméable aux circulations transversales. L’aspect productif et artisanal de cette occupation rendait indispensable cette approche et sa mise en perspective à une plus large échelle, surtout lorsque l’on sait l’importance accordée au fer à cette époque.

Enfin, le seul texte disponible pour cette période, la *Vita Patrum Jurassium*, fait l’objet d’une lecture critique en fin d’ouvrage – malgré de nombreux biais propres au discours hagiographique – et propose un autre point de vue sur l’occupation de cet espace géographique.

Dix années séparent le premier coup de truelle sur le terrain de l’aboutissement de cette publication, le temps que les dossiers de financement aboutissent et que s’achèvent les études. Au fil des ans, le dossier sur l’établissement de Pratz a conservé toute sa singularité à l’échelle nationale, même si d’autres occupations similaires sont venues témoigner, chacune à leur manière, de l’originalité de cette occupation du haut Moyen Âge dans l’Arc jurassien. En dépit de toutes les interrogations qui demeurent, et d’études encore trop ponctuelles qui rendent risquées certaines hypothèses, nous souhaitons qu’au fil des pages, le lecteur apprécie les avancées réalisées sur la connaissance de l’occupation mérovingienne de ce massif.
Historique de l’opération et méthodologie

Les fouilles réalisées sur les communes de Pratz et de Lavans-lès-Saint-Claude ont eu lieu dans le cadre des travaux engagés sur le projet d’une zone d’aménagement concerté (ZAC) conduit par la communauté de communes du plateau du Lizon (fig. 2 et 3). L’emprise de ce projet, atteignant une superficie de 16 ha, et sa situation sur l’un des rares plateaux du massif du haut Jura (fig. 4) ont constitué des arguments en faveur du suivi de ce dossier par le Service régional de l’archéologie de Franche-Comté. Un programme de recherches engagé sur le site religieux de Saint-Claude, ville toute proche, de la fondation de l’abbaye au Vᵉ siècle au départ de l’évêque au début du XIXᵉ siècle, constituait un argument...

Le premier diagnostic archéologique a été réalisé en 1999 (fig. 5 et 6), sur une première phase de 6,5 ha du projet d’aménagement, à l’origine de la découverte de l’établissement mérovingien (Billoin 1999). L’aspect des vestiges, répartis sur deux secteurs distincts comprenant chacun un édifice, a incité à un découpage en deux tranches de fouilles, conduites en fonction du calendrier d’implantation des bâtiments industriels. Les coûts d’intervention rapportés à la solvabilité des communes concernées ont également motivé ce choix ; le financement a été complété par l’obtention d’une participation de l’État à la hauteur de 45 % des coûts.
Fig. 6: Plan d’ensemble des opérations de diagnostics archéologiques et de fouilles (DAO D. Billoin).

Une attention particulière a été portée aux décapsages mécaniques, effectués à l’aide d’une minipelle, en raison d’un socle rocheux parfois affleurant et afin de ne négliger aucun indice d’occupation. Les dépressions d’origine karstique et les anomalies du microrelief ont systématiquement été sondées et des tranchées continues ont été ouvertes sur les pentes afin de faciliter la lecture de la dynamique des sols et de leur érosion (fig. 7). Devant la qualité de conservation des vestiges et leur structuration particulière sur le banc rocheux, une fouille planimétrique fine s’est imposée, associée à l’utilisation d’un carroyage métrique permettant de localiser précisément le mobilier prélevé à la fois par unité stratigraphique et par carrés de 1 m de côté (fig. 8). L’équipe archéologique a bénéficié sur le terrain de l’intervention d’un géomorphologue et d’un paléométallurgiste. Des prélèvements systématiques ont été réalisés par quart de mètre carré en vue de tamisages, dans l’optique de l’analyse environnementale et afin de cerner les
activités métallurgiques développées sur le site. En raison de moyens somme toute assez faibles, la priorité a été donnée à une approche globale plutôt que de privilégier une étude ou l’autre, ce qui explique parfois le nombre réduit d’échantillons étudiés. Les analyses ont donc été diversifiées pour tenter d’obtenir une vision au plus proche de la réalité. L’étude du mobilier métallique a nécessité des nettoyages et des restaurations pris en charge par le Musée d’archéologie du Jura, à Lons-le-Saunier, lieu de dévolution de cette collection. Des analyses physicochimiques et pétrographiques ont été engagées sur le vaisselier afin de poser les bases d’une typochronologie, qui reste largement à construire à l’échelle régionale, et pour aborder la question des échanges et de la circulation.

Le massif du Jura: approche géographique et géomorphologique

S. Rotillon

Le massif jurassien s’insère entre le massif vosgien au nord et la chaîne alpine au sud, et constitue une barrière naturelle entre la Franche-Comté et la Suisse (fig. 9). Il est caractérisé par un relief très dissymétrique, débutant à l’ouest par de simples gradins qui dominent la dépression bressane et s’élèvent progressivement vers l’est, gagnant en vigueur dans le cœur du massif, puis redescendant brutalement vers la plaine molassique suisse. Bien que d’altitude assez modeste, un peu plus de 600 m en moyenne avec un point culminant dépassant à peine 1 700 m (Crêt de la Neige : 1 723 m), cette montagne connaît un climat rigoureux, froid à très froid l’hiver, et frais l’été. Cette rigueur tient à une position relativement élevée en altitude, plus que les Alpes, à un éloignement par rapport aux influences océaniques et à une configuration du relief n’offrant pas de larges vallées, comme les limagnes du Massif central. La montagne est en revanche bien arrosée; les précipitations se produisant principalement durant l’automne et l’hiver, elles se font sous forme de neige, conduisant à un enneigement généralement long et important, surtout par rapport à l’altitude relative du massif.
Les précipitations hivernales sont apportées par les vents d’ouest, le printemps peut connaître des descentes d’air polaire générant des neiges tardives, l’été n’est pas une saison sèche et connaît des précipitations sous l’influence des vents du sud-ouest, et l’automne reçoit des pluies du fait des circulations méridiennes, qui se traduisent par une forte instabilité atmosphérique et des précipitations abondantes (Pagney 1988).

L’altitude du massif jurassien croissant vers le sud, les cours d’eau y sont plus profondément encaissés qu’au nord. Ainsi, l’Ain et la Bienne entaillent plus nettement le relief que le Doubs et la Loue. Les écoulements sont de type pluvionival, avec deux périodes de hautes eaux – au printemps lors de la fonte des neiges et à l’automne –, ainsi que deux périodes de basses eaux – un creux estival plus marqué et un creux relatif lié à la rétention nivale durant l’hiver. Les étiages restent cependant soutenus en raison du caractère karstique de la région, les amplitudes entre hautes et basses eaux étant assez peu importantes.

La végétation du Jura s’organise selon l’altitude du massif et le gradient climatique, mais reflète aussi l’impact anthropique. Les feuillus cèdent progressivement la place aux résineux lorsque l’on gagne la Haute Chaîne, mais la prédominance du sapin dès le second plateau apparaît favorisée par l’Homme. L’épicéa prend le relais du sapin à partir de 1 000 m puis, dans la partie la plus élevée, l’arbre tend à disparaître au profit d’une pelouse d’altitude.

La Haute Chaîne

L’occupation mérovingienne de Pratz le Curtillet prend place dans la partie interne de la chaîne jurassienne, qualifiée de Haute Chaîne ou de Jura plissé (fig. 9). Il s’agit d’un arc montagneux à la convexité orientée vers l’ouest et constitué par un ensemble de plis parallèles. Les anticlinaux sont généralement coffrés et parfois renversés sur des synclinaux en auge. Des accidents transverses, fréquemment sénestres, décalent les plis, créant ainsi des zones de failles exploitées par l’érosion et guidant les circulations à l’intérieur de la chaîne : circulation de l’eau d’abord, des hommes ensuite.

La lithologie est dominée, comme pour l’ensemble du Jura, par les calcaires du Secondaire. Les terrains d’âge crétacé sont souvent mieux représentés que dans la partie externe de la chaîne. Le Tertiaire n’est pas absent, mais les affleurements sont en général peu étendus. Le Quaternaire se manifeste par des dépôts glaciaires ou fluvioglaciaires principalement, mais l’impact du Dernier Maximum Glaciaire se ressent aussi en négatif par l’absence de formations d’altérations anciennes. L’extension maximale de la calotte glaciaire lors du dernier Pléniglaciaire montre l’importance de la surface concernée par l’érosion des sols par les glaciers (fig. 10). Les sols de cette partie sont de ce fait d’ordinaire peu épais et jeunes.

Dans la région étudiée, à l’ouest de Saint-Claude, la configuration des terrains est conforme dans les grandes lignes à ce qui vient d’être présenté. Les plis sont d’orientation générale nord-nord-est/sud-sud-ouest, mais s’infléchissent au nord de Saint-Claude pour suivre une direction plus nettement nord-est/sud-ouest. Le Jura tabulaire n’est pas très éloigné de ce secteur : le plateau de Champagnole s’étend à partir de Moirans-en-Montagne, à un peu plus de 5 km à l’ouest de Pratz.

L’établissement mérovingien de Pratz le Curtillet est localisé sur le flanc occidental de l’anticlinal de Lavans-lès-Saint-Claude. Cet anticlinal présente une structure relativement complexe : éventré vers le sud en direction de Molinges par la vallée de la Bienne, disséqué sur ses flancs par le Lizon à l’est et par un
Fig. 9: Les grands ensembles structuraux du Jura (d’après Chauve et al. 1975).
Fig. 10: Limite d’extension de la calotte glaciaire jurassienne et surface concernée par l’érosion.
Chap. 1 – Introduction

vallon sec à l’ouest; ces deux dépressions latérales, dont la seconde se trouve directement en amont du site étudié, sont en partie comblées par des dépôts morainiques. De petits plissements secondaires accidentent encore le flanc de cet anticlinal, le long de la route directe de Pratz à Saint-Lupicin par exemple. La topographie de ce secteur est donc globalement irrégulière jusque dans le détail. La Bienne est le principal cours d’eau de la région. La rivière s’écoule selon un tracé très tourmenté, taillant en gorge le fond des synclinaux, franchissant les anticlinaux en cluse. Le fond de vallée est généralement étroit, et pas toujours propice à des occupations de longue durée en raison du débit de la rivière. Les replats et les terrasses fluvioglaciaires constituent des sites plus favorables qui ont souvent servi de support à des agglomérations, comme celles de Saint-Claude, de Lizon ou de Molinges. Le cours d’eau et sa vallée constituent des axes naturels de circulation pour traverser le massif d’ouest en est dans cette région à la topographie contrastée.

Le caractère karstique des formations calcaires du Jurassique supérieur est marqué. Le drainage souterrain est important pour toute la région et les ressources en eau de surface ne sont pas toujours importantes. On peut noter globalement que l’âge des terrains a une incidence sur l’accessibilité à une ressource en eau régulière et aisée: les terrains du Crétacé constituent des aquifères plus favorables. Les niveaux marneux intercalés dans les calcaires du Valanginien, substrat de l’établissement de Pratz, donnent ainsi naissance à de nombreuses sources; on en retrouve plusieurs au nord-ouest de l’occupation mérovingienne. Les sols de la Haute Chaîne sont des sols jeunes, développés depuis le Dernier Maximum Glaciaire (Bruckert, Gaiffe 1985). Ainsi, dans la région de Pratz, la vallée de la Bienne était enlacée et contribuait à alimenter la langue glaciaire de l’Ain à partir de la Haute Chaîne (Campy 1982). Après le retrait glaciaire, la dalle calcaire qui constitue le substrat de l’établissement mérovingien devait donc se trouver totalement dénudée. Les sols, qui se sont développés depuis, étaient peu épais en raison de la lenteur de la pédogenèse et de la pente du terrain qui favorise les transferts de matière vers le bas du versant.

Physionomie du site d’implantation de l’établissement mérovingien

L’intervention géomorphologique a été effectuée sur des coupes témoin laissées en place par l’équipe archéologique et disposées selon le sens de la pente générale du terrain. Une seule coupe offrait une puissance de formations superficielles légèrement supérieure à 1 mètre, et a fait l’objet de l’analyse la plus détaillée (fig. 11). Cette étude a été complétée par une observation des sondages de diagnostic qui présentaient une vision moins perturbée des dépôts fins masquant le substrat calcaire. La faible variabilité apparente des corps sédimentaires ne rendait pas nécessaire une étude stratigraphique approfondie; le caractère homogène des dépôts de recouvrement du calcaire constitue l’élément qui domine la stratigraphie du site. La localisation sur un haut de versant se révèle globalement défavorable à un enregistrement sédimentaire important, le bilan sédimentaire étant déséquilibré en faveur de l’érosion. L’établissement de Pratz le Curtillet est localisé sur le plateau du Lizon, un replat structural d’altitude moyenne comprise entre 600 et 650 m, qui correspond à une surface calcaire dominée à l’ouest par un relief marqué culminant à plus de 850 m. Une rupture de pente nette limite le site vers l’est: le replat domine la combe qui s’ouvre dans le cœur de l’anticlinal de Lavans-lès-Saint-Claude.
Cette dépression débouche sur la vallée de la Bienne, près de 300 m en contrebas du Curtillet. L’occupation se trouve ainsi à un peu moins de 2 km à vol d’oiseau de la rivière, mais en est séparée par un dénivelé important. La pente du plateau est peu marquée par rapport à la topographie de la région, mais atteint tout de même une valeur moyenne de près de 10 % au droit du site. Cette valeur moyenne rend mal compte de la réalité, car on observe en fait une petite rupture de pente, à l’amont immédiat de l’installation mérovingienne, qui prend place sur un secteur d’atténuation de la pente à un peu moins de 7 %. La zone étudiée s’étend presque intégralement entre les courbes de niveau 610 et 630 m, et les vestiges ont été mis au jour sur la partie la plus plane du terrain, entre les courbes 610 et 620 m.

Sur l’ensemble de la surface fouillée et diagnostiquée, on observe une grande homogénéité générale de la stratigraphie. Le substrat – une dalle calcaire fortement lapiézée du Valanginien – est recouvert par une argile légèrement limoneuse de teinte brun sombre. Ces dépôts fins présentent un profil très peu différencié. Dans le détail, la variabilité de l’épaisseur de cette couverture est grande. Le calcaire est parfois presque affleurant, ponctuellement masqué par une couche argileuse de plus de 1 m à l’emplacement de dépressions karstiques. La tendance générale est à la faiblesse de la couverture fine ; l’épaisseur sédimentaire est inférieure à 30 cm au-dessus du calcaire dans la plupart des sondages sur l’emprise des 16 ha. Localement, cette épaisseur augmente, sans lien évident avec une particularité topographique comme un microvallon qui aurait débouché dans la combe de Lavans-lès-Saint-Claude et joué le rôle de piège sédimentaire. Un secteur de plus forte accumulation correspond au site de l’installation mérovingienne, les vestiges agissant comme piège sédimentaire.

La couverture pédologique observée présente toutes les caractéristiques des sols colluviaux. Le matériau est globalement uniforme, sans différenciation marquée en horizons. La structure du sol est polyédrique, avec des agrégats de petites dimensions, peu résistants. Les éléments grossiers sont peu fréquents. Le contact avec la roche du substrat est tranché avec une relative indépendance entre la couverture et le calcaire typique des colluvions. On n’observe pas d’horizon pédologique d’altération (horizon S) clairement identifiable, ce qui permet de penser que les colluvions recouvrent directement la dalle calcaire, au moins en partie.
En ce qui concerne le secteur fouillé, les formations superficielles sont issues presque totalement du transfert des produits de l'érosion et non de l'évolution in situ du substrat. La microtopographie du substrat explique ces différences. La complexité de la structure anticlinale, associée aux phénomènes de dissolution du calcaire et d'érosion fluviatile ou fluviglaciaire, a créé une surface très vallonnée dans le détail. Ces irrégularités jouent un rôle capital. Les microdépressions stockent de façon privilégiée les colluvions, alors que les bombements correspondent à des zones de départ de matière sur lesquels la roche est parfois pratiquement à nu. Les phénomènes de transfert sont déterminants dans la mise en place des formations superficielles par rapport aux processus pédogénétiques.
Les données sur le peuplement de cette moyenne montagne

D. Billoin

La Haute Chaîne du Jura, partie la plus élevée du massif, dessine un bourrelet montagneux marqué par des reliefs très accidentés, des vallées encaissées et des altitudes comprises entre 430 et 1000 m dans le secteur de Saint-Claude (fig. 9). Le mont Jura, cité par Strabon dans sa description des Gaules (Géographie, IV, I, 3, 4), est qualifié par César de « chaîne très haute » (La Guerre des Gaules, I, 2). S’il constitue une limite naturelle entre Séquanes et Helvètes au début du Ier siècle de notre ère, et forme une véritable barrière topographique, ce mont Jura n’a pas représenté un obstacle infranchissable pour les hommes. D’ailleurs, Strabon indique un itinéraire reliant l’Italie à la Gaule, par un col qui franchit le Mont Jura, permettant de pénétrer dans le pays des Séquanes et dans celui des Lingons ; à travers ce dernier, deux itinéraires se séparent, l’un en direction du Rhin, l’autre vers l’océan (Géographie, IV, 6, 11). Cette voie, figurée sur la table de Peutinger et l’itinéraire d’Antonin, se dirige vers Vesontio/Besanaçon en passant par le col du Grand-Saint-Bernard (Alpes), Lousonna/Lausanne et Ariarical/Pontarlier, et son franchissement du Jura correspond au col de Jougné (Mangin et al. 1990), axe de circulation naturel et seule route aisément praticable qui permet une traversée transjurane. L’importance de ce passage dans le massif le rend incontournable de la Préhistoire jusqu’à l’époque moderne (Bichet, Millotte 1992, p. 18). Une seconde voie traversait le territoire séquane : étroite et malaisée, elle était resserrée entre le Jura et le Rhône et les chariots y passaient à peine un par un ; d’ailleurs, une très haute montagne la dominait, en sorte qu’une poignée d’hommes pouvait facilement l’interdire (La Guerre des Gaules, I, 6, 1). Cet axe de circulation, dominé par le Plat des Rochet et le Grand Credo, emprunte le col de l’Écluse, où passe l’actuelle route de Lyon à Genève (Rothé 2001, p. 88). À deux reprises, la Vie des Pères du Jura mentionne un chemin reliant Saint-Claude à Genève (Martine 1968, p. 289 et 403), passant vraisemblablement par la cluse de Nantua.

Aucune voie antique n’est formellement attestée dans cette région. Cependant, les études anciennes sur la toponymie et la topographie du secteur situent des accès desservant Saint-Claude depuis le carrefour d’Orgelet en passant par la Combe d’Ain. Depuis Saint-Claude, une route chemine à l’est vers Genève et franchit la chaîne jurassienne par le col de la Faucille, une autre au sud se dirige vers Izernore et une dernière, au nord, rejoint, par la vallée de la Bienne, la voie empruntant le col de Saint-Cergue à travers le massif. De fait, ces tracés reprennent les axes naturels les plus aisés dans un relief montagneux qui conditionne fortement le réseau viaire, et induit une pérennisation des itinéraires.

Les mentions de voies sont fréquentes sur le plateau du Lizon, l’un des rares espaces plats propices à une installation humaine dans ce secteur. Le plateau est desservi par une route (fig. 13) qui, du nord au sud, passe par Ravilloles, Saint-Lupicin, aux lieudits Vie des Morts, la Vie Neuve, Sur Châtillon et Lavans-lès-Saint-Claude le Planet. Un fortin destiné à défendre cet axe de circulation est signalé à Saint-Lupicin au début du XXe siècle au lieudit En Châtillon. Ce site, comportant des vestiges de constructions d’où proviennent plusieurs monnaies non datées, n’est plus localisé de nos jours (Carrez 1909, p. 257 et 260). Une autre voie d’axe est-ouest, venant d’Orgelet, emprunte le seul passage praticable de la côte de l’Heute au Pont de la Pyle, vers Villards d’Héria (fig. 14), traverse...
la commune de Pratz près du Châtelet et à la Vie Marchande. Elle franchit la Bienne à Brive, où la roche garde la trace de profondes ornières. Son parcours emprunte ensuite les gorges de cette rivière jusqu’à Saint-Claude puis, sortant de la ville au pied de la montagne de Rochefort, elle se poursuit à Septmoncel vers Genève (Bel 1861 ; Monnier 1855 ; Rousset 1853-1858).

L’origine du peuplement de cette partie du Haut-Jura remonte vraisemblablement à la Préhistoire. En effet, plusieurs points du territoire de Saint-Claude et du plateau du Lizon ont livré de l’outillage lithique depuis l’Épipaléolithique, la période qui marque la fin des temps glaciaires. L’implantation humaine semble se confirmer à l’âge du Bronze, qui se distingue par la découverte de sépultures et d’objets métalliques, sur le plateau et ses environs immédiats. L’inventaire de ces découvertes a été réalisé par P. Pêtrequin et D. Vuaillat (1971). En 1897, trois tumuli ont été fouillés au lieu-dit Au Disart, à Lavans-lès-Saint-Claude; deux longues épingles en bronze datant de la transition Bronze final-Hallstatt proviennent de l’un d’entre eux. À Pratz, la grotte de Saint-Romain a livré une sépulture féminine dotée d’une parure en rondelles d’os poli, d’un type classique de la transition chalcolithique-Bronze ancien. Dans cette cavité, un niveau

Fig. 13 (ci-contre) : Environnement archéologique autour du site sur le plateau du Lison (DAO D. Billoin et F. Chevaldonnet).

Fig. 14 (ci-dessous) : Passage de la voie romaine du Pont de la Pyle percé dans le massif de la Côte de l’Heute, avec le Haut-Jura à l’arrière plan (cliché P. Haut).
d’occupation avec des foyers a aussi livré de la céramique du Bronze final 3. Des fragments de céramique du Bronze final ont également été recueillis à proximité, en contrebas des falaises, près de la grotte Lacuzon. Enfin, une hache à bord du Bronze moyen provient d’un murger à Ravilloles, tandis qu’une pointe de lance a été trouvée au confluent du Lizon et de la Bienne au lieudit Brive.

À quelques centaines de mètres au nord de l’église de Pratz, au lieudit En Planchamps (Biloin 2006), une fouille préventive a permis d’étudier deux batteries de fours domestiques et un grenier sur poteaux datés de 801 à 409 avant notre ère (Ly-13206 ; fig. 15). Ces vestiges témoignent de la mise en valeur et de l’exploitation des terres, et constituent des données rares à l’échelle régionale pour une période encore essentiellement documentée par le domaine funéraire.

L’occupation gallo-romaine du secteur est dominée par deux sites majeurs : l’agglomération-sanctuaire de Villards d’Héria et la bourgade de Jeurre, à vocation probablement portuaire.

Le sanctuaire bipartite de Villards d’Héria, probablement le plus important de Séquanies, s’étale sur 1 km de longueur, du lac d’Antre au val d’Héria où se développe l’agglomération secondaire estimée à une dizaine d’hectares d’après les prospections (Rothé 2001). Occupé de l’âge du Bronze à la fin de l’Antiquité,
Chap. 1 – Introduction

ce vaste site est peut-être également le siège d’un atelier monétaire mérovingien. C’est un triens en or, à la légende ANTRO VICO FITVR O au nom du monétaire TEODOMARIVS MONITA, trouvé à Chargey-lès-Ports et daté des années 620-640 (Depeyrot 1998; Lafaurie, Pilet-Lemière 2003), qui vaut l’attribution d’un atelier monétaire mérovingien à cette localité1.

1. L’attribution a été effectuée dès 1883 par A. Castan (Lafaurie 1981). L’attribution à Antre repose sur la distribution géographique du lieu de découverte (Chargey-lès-Ports) et du lieu d’émission de trois monnaies typologiquement proches, celles d’ANTRO VICO FITVRO (Antre), LATONA VICO FIT (Losne, Saint-Jean-de-Losne, Côte-d’Or) et OXSELLO VICO (Osselle, Doubs).

La vallée de la Bienne est jalonnée par des découvertes d’époque antique. En suivant la rivière vers l’est en direction de Saint-Claude, on note ainsi l’existence de vestiges d’un monument important à Vaux-lès-Saint-Claude, de nombreuses monnaies – trouvées anciennement sur le territoire de la commune (Monnier 1855) –, de fondations de bâtiments ainsi que du mobilier du Haut et du Bas-Empire à Molinges, d’une carrière de marbre probablement d’origine romaine à Chassal (Rothé 2001), d’un trésor monétaire de la première moitié du IVe siècle au hameau de Vauclose (Bully 1994), d’une boucle de baudrier en bronze à Soucy ou d’un niveau d’occupation romaine sous la cathédrale de Saint-Claude (Mordefroid 1990). Les découvertes sont également nombreuses sur le plateau du Lizon : monnaies non localisées (Davillé 1954) et soc de charre trouvés en 1896 à Saint-Lupicin (Benoit 1877), hypothétique temple dédié à Jupiter au sommet de Roche Jean à Lavans-lès-Saint-Claude, monnaies (Grut 2005, p. 69) et lot de céramiques piégé dans une diaclaste d’un banc rocheux en contrebas du Curtillet à Pratz témoignent de l’occupation antique dans ce secteur (Billoin 1999).

Des forts et des fortifications apparentes également dans la littérature ancienne à Rochefort, à l’entrée du vallon à Villard-Saint-Sauveur, à Bourg Dessus et au Molard, ainsi qu’à Châtillon à Lavans-lès-Saint-Claude (Rousset 1853-1858). Toutefois, ces sites de hauteur correspondent davantage à une tradition de la recherche de la fin du XIXe et du début du XXe siècle qu’à une réalité. D’ailleurs, aucun de ces sites perchés n’est attesté, hormis celui localisé au sommet de la colline boisée les Bouchères à Lavans-lès-Saint-Claude, marqué par une double enceinte en pierre sèche en gros appareil, mais qu’aucun mobilier ne permet de dater.

En dehors de l’immanicipation narrée d’une certaine façon par la Vie des Pères du Jura, l’occupation du sol au haut Moyen Âge n’est perçue que par de rares découvertes ponctuelles ou anciennes d’interprétation délicate. Des monnaies de la fin de l’Antiquité, un fragment de récipient en pierre ollaire et divers éléments métalliques en fer forgé accompagnés de scories ont été trouvés sous le couvert forestier d’une plate-forme située dans une colline, en bordure orientale du plateau du Lizon et insérée dans un méandre des gorges de la Bienne sur le tracé probable de la voie antique, correspond à une position stratégique. Ces caractéristiques pourraient faire entrer cette occupation dans la catégorie des habitats de hauteur, en cours d’étude dans la région2 (fig. 16).

1. L’attribution a été effectuée dès 1883 par A. Castan (Lafaurie 1981). L’attribution à Antre repose sur la distribution géographique du lieu de découverte (Chargey-lès-Port) et du lieu d’émission de trois monnaies typologiquement proches, celles d’ANTRO VICO FITVRO (Antre), LATONA VICO FIT (Losne, Saint-Jean-de-Losne, Côte-d’Or) et OXSELLO VICO (Osselle, Doubs).

2. Étudiés dans le cadre du Programme Collectif de recherche intitulé « Les sites de hauteur de l’Antiquité tardive et du haut Moyen Âge en Franche-Comté (IVe-VIe s.) », sous la direction de D. Billoin, avec la collaboration de P. Gandell.
d’un affrontement militaire meurtrier (Vuillet 1979, p. 11). Malheureusement, l’endroit n’est pas localisé et le mobilier a disparu, de sorte qu’il est difficile d’en préciser la chronologie. Au Pré Saint-Sauveur, les travaux de construction du lycée, réalisés dans les années 1970, ont détruit une occupation médiévale comprenant au moins un bâtiment religieux accompagné d’une grande densité de sépultures. Des éléments de sarcophages auraient été observés à cette occasion, mais aucune trace tangible n’est parvenue jusqu’à nous. Des sépultures en pierres taillées ont été trouvées près du chemin Lary, à Molinges ; l’une d’elles portait l’inscription à demi effacée CVI BELLO (Monnier 1855). Au pied de la colline de Saint-Romain, une nécropole comportant des coquilles percées et un scramasaxe sont mentionnés (ADJ). La pente sous la falaise a livré un mobilier en position secondaire composé de deniers médiévaux en argent, des scories de fer, de plomb et de bronze, quelques fragments de céramique à pâte sombre et un fragment de récipient en pierre ollaire (Grut 2005). Ces éléments matériels proviennent vraisemblablement d’une occupation du haut Moyen Âge située au bord du plateau, impossible à localiser du fait du couvert forestier. À proximité, un tombeau non daté a été découvert en 1852, à l’occasion de travaux réalisés derrière l’autel de la chapelle de saint Romain (fig. 17). Il contenait une double réduction. Sur la butte située au-dessus de cette chapelle édifiée au xiiᵉ-xiiiᵉ siècle, un cimetière médiéval bordé de murs a fait l’objet de fouilles partielles en 1969. Parmi le mobilier des tombes se trouvait une monnaie d’argent frappée à Auxonne par le duc Hugues IV de Bourgogne (1250) et divers petits objets, dont une statuette en os représentant un abbé mitré.

En 1692, des travaux réalisés dans l’église Notre-Dame de Saint-Lupicin, construite à la fin du xivᵉ ou au début du xive siècle, ont révélé sous l’autel un monument de « pierre polie », long de deux pieds, haut et large d’un pied (un sarcophage ?) abritant des ossements identifiés par une plaque en plomb portant l’inscription Hic requiescit beatus Lupicinus abbas, traduite par « Ici repose le bienheureux Lupicin abbé » (fig. 18). La paléographie place cette inscription funéraire entre la fin du vᵉ siècle et le viiiᵉ siècle (Bully, Mordefroid 1997). Parmi les nombreuses sépultures médiévales fouillées en 1996 sur le parvis et aux abords de cette église romane, la plus ancienne, caractérisée par un coffre de plan naveforme, a été datée par carbone 14 entre 991 et 1158 (Bully, Mordefroid 2000). Un sondage, réalisé en 1997 à l’intérieur de cet édifice, a permis la découverte d’une tombe monumentale de grandes dimensions (3,40 x 1,40 m), constituée d’une construction soignée formée de murets, certaines assises étant disposées en opus spicatum. Cette architecture funéraire, située dans un emplacement privilégié
à la croisée du transept, a été datée, par radio-carbone, des années 230-430. La monumentalité de la construction et son maintien dans l’église du xiᵉ siècle permettent de l’identifier comme une sépulture attribuée au tombeau de saint Lupicin, second Père du Jura et fondateur de Lauconne (Bully, Causevic-Bully 2008). En 1794, le village offre à la Bibliothèque nationale un manuscrit des Évangiles. La reliure de cet ouvrage, un dip-tyque en ivoire de la seconde moitié ou de la fin du viᵉ siècle, serait l’œuvre d’un atelier secondaire, d’après l’étude stylistique et technique, dont la localisation reste incertaine, peut-être en Gaule ou en Egypte plutôt qu’à Constantinople. Chaque élément composant la couverture est constitué de cinq plaques sculptées en ivoire, dont les deux principales représentent le Christ entre Pierre et Paul, et la Vierge à l’Enfant entre deux anges (Byzance, p. 76). Il est probable que ce livre appartenait à la bibliothèque du monastère de Condat. L’image qui se dégage de ces découvertes est bien celle d’une occupation ancienne et régulière du plateau du Lizon et de la vallée de la Bienne. Cependant, la plupart des mentions de vestiges sont anciennes et fragmentaires, et résultent bien souvent de découvertes fortuites à la localisation souvent imprécise. Le climat rude, avec un long enneigement, la topographie marquée et l’importance du couvert forestier n’ont pas favorisé la prospection. En conséquence, cette zone de montagne à faible densité de population reste en marge des zones d’étude et l’écart s’accentue avec le bas pays. Malgré tout, il ne fait pas de doute que l’axe de circulation naturel qui traverse ce territoire constitue l’un des rares passages obligés à travers la chaîne jurassienne et joue un rôle fondamental dans l’occupation. Les lieux d’implantation sont concentrés sur ce plateau du Lizon, offrant un vaste espace sensiblement plat et libre de contraintes topographiques, et la vallée de la Bienne facilite les communications. Le lieu choisi par les Pères du Jura pour fonder leurs monastères dans le deuxième tiers du viᵉ siècle n’avait donc

Fig. 17: La chapelle Saint-Romain construite à l’extrémité sud du plateau du Lizon (cliché R. Lepennec).

Fig. 18: Plaque en plomb à épitaphe funéraire découverte au xixe siècle sous l’autel de l’église de Saint-Lupicin (cliché L’Architecture graphique).

rien d’un désert inhabité et hostile. Cette forêt-désert, comme les déserts maritimes des moines celtes, doit être comprise comme un lieu symbolique où réalités matérielles et notions spirituelles s’entremêlent. Les lettrés antiques décrivent les massifs forestiers comme des espaces effrayants, incultes, non domestiqués par opposition aux champs, ce qui soulignerait par conséquent l’absence de civilisation dans des récits à portée morale (Wickam 1983). Par la suite, ces grands espaces forestiers jouent un rôle symbolique important et de nombreuses chansons de geste y font référence, illustrant cet espace particulier (Le Goff 1999). Si les moines trouvent effectivement la solitude dans ce Haut Jura, le désert est tout relatif, comme le révèlent les sources archéologiques, même lacunaires. Il apparaît que les implantations monastiques sanclaudiennes n’étaient jamais très éloignées d’un axe de circulation nécessaire du fait des cheminement fréquents des moines sur les routes à cette époque, comme en témoignent les textes hagiographiques. La vallée du Nozon – où s’installe le monastère le plus ancien et le plus prestigieux de Suisse, Romainmôtier, fondé également par saint Romain et Lupicin d’après la tradition -, déjà habité avant l’arrivée des moines, se trouvait près de l’importante voie qui reliait la Gaule à l’Italie par le col du Grand-Saint-Bernard (Auberson, Locatelli 1997, p. 6). À l’opposé, dans la partie nord du Jura, les terres offertes à l’abbé Walbert de Luxeuil, pour fonder le monastère de Mouthier-Grandval vers 640, étaient traversées par la route menant au col de Pierre Pertuis, un axe très fréquenté (Tauber 2006, p. 73). Les pèlerinages à Rome, les échanges commerciaux et politiques, les liens de confraternité entre les abbayes bourguignonnes (Saint-Bégnines à Dijon, Saint-Marcel de Chalon-sur-Saône) et valaisanes (Saint-Maurice d’Agaune) soulignent encore l’importance des voies transjuraniennes au haut Moyen Âge. Il est cependant indéniable que ces installations contribuèrent à développer l’occupation et à valoriser les territoires par des défrichements intenses afin d’agrandir les domaines ecclésiastiques. Ainsi, les puissantes abbayes de Saint-Claude contrôle, à partir du xiième siècle, une trentaine de prieurés et domine politiquement toute la région située entre Ain et Bienne. Les laïcs suivent cet exemple, à l’exemple de Jean de Chalon qui obtient en 1266, de l’abbaye de Saint-Claude, l’inféodation de toutes les jouxs entre le monastère et la région de Pontarlier. Le cadre paroissial se développe sensiblement à mesure que sont créés des lieux de culte, contribuant à fixer la population, autour des xie-xiième siècle le plus souvent.

Les sources textuelles et toponymiques

D. Billoin

Toujours utiles, mais délicats à situer chronologiquement, les noms de lieux et de localités apportent fréquemment des indications sur l’occupation d’un territoire. La mémoire collective enregistre ainsi, depuis fort longtemps, les caractéristiques
et les particularités de chaque lieu, afin de faciliter leur identification dans le parler usuel. Désignant le plus souvent l’état et la gestion des terres, ces lieudits rappellent également des événements ou véhiculent des souvenirs.

Outre les indices apportés par les voies de circulation, l’examen des toponymes du plateau du Lizon révèle une occurrence fréquente des lieudits dérivés de *curtis*, à l’exemple de la parcelle étudiée: le Curtillet. Le terme *curtis* serait un mot de souche germanique, attesté également dans le Jura suisse, notamment autour du hameau du haut Moyen Âge de Develier-Courtételle (Stékofer 2004). Dans le patois jurassien, le *curtil* est un jardin potager attenant à la maison (Robez-Ferraris 1995, p. 150), conforme au latin médiéval *cohortis* pour désigner l’enclos, la cour d’une ferme ou basse-cour, et à la définition donnée par le dictionnaire Larousse qui propose, pour le mot *courtil*, une origine du bas latin *cohortile* « jardin attenant à la ferme ». Le *courtil* est la première forme de la tenure seigneuriale et de l’exploitation agricole, synonyme de domaine rural, et son nom devient celui de la ferme; le *curtillet* en est un diminutif. Les toponymes dérivés de ces noms sont de formation germano-romane de l’époque mérovingienne, désignant la ferme alors synonyme de *villa*, au sens de domaine rural (Schulé 1979). Malgré l’apparente synonymie dans les lois germaniques de *curtis* et *villa*, dont dérivent les préfixes ou suffixes en court-/cor (*curtis*) et en velier/vilier/villiers/vilard (de *villa*), même s’ils sont d’origine latine, sont caractéristiques d’une présence et d’une structuration franque du territoire (Marti 2000, p. 339-340; Paravicini et al. 1997; Perrenod 1942; Schulé 1979). En raison de la complexité de ce domaine très spécialisé, nous nous contentons de ces quelques remarques générales, sans entrer dans ce débat qui ne concerne pas directement l’occupation mérovingienne.

Le nom du village de Pratz4 signifie localement « des prés » (dérivé du latin *pratum* pour pré), que l’on retrouve sous diverses orthographies sur le plateau du Lizon à Pra, la Pra et la Prat dérivant du franco-provençal. Dans cette langue, *pra* est un type lexical usuel et polysémite qui s’applique aussi bien au jardinning de montagne, au pré de fauche ou à la prairie (Bessat 1993, p. 145). Le suffixe en « az » de Pratz (comme ceux de oz, uz, ax, ex, ux, oux) est une caractéristique de parler qui trouve une survivance dans les noms de villages et de lieux. Il indique la syllabe accentuée alors que la dernière consonne n’est pas prononcée, ce qui est le cas encore aujourd’hui sauf si le locuteur est étranger à la région !

Le gallo-roman est une langue vernaculaire parlée en Gaule du Vᵉ au IXᵉ siècle, à l’origine de l’ancien français et divisée, dès le VIIIᵉ siècle, en langue d’oil dans la partie septentriionale et en langue d’oc, occitan et franco-provençal dans la partie méridionale (fig. 19).

Ce bref panorama des noms de lieux permet de mesurer l’originalité du paysage toponymique particulier de ce secteur du sud Jura intégré à l’aire du franco-provençal, une langue transfrontalière parlée des deux côtés des montagnes, qui trouve des parallèles jusqu’en Savoie et témoigne d’affinités méridionales.

4. Il existe un hameau de Pratz dans le Faucigny en Haute-Savoie.
Les vestiges du haut Moyen Âge sont localisés au bas d’une pente qui marque la bordure du plateau du Lizon, orienté à l’est, sur une partie assez plane du terrain, entre 610 et 620 m d’altitude. Ils s’inscrivent sur une dalle calcaire de lapiaz et apparaissent en majeure partie sous la terre végétale, à 0,30 m de profondeur en moyenne, parfois en situation affleurante. Originale, l’occupation est composée de deux édifices construits majoritairement en pierre, l’un abritant des activités artisanales (fig. 20), en particulier du travail de forge, l’autre dévolu à la partie résidentielle (fig. 21). Ces deux bâtiments sont distants d’une centaine de mètres l’un de l’autre et situés au centre d’une emprise explorée sur 16 ha (fig. 22). L’isolement de cet établissement, limité à ces deux constructions et à de rares aménagements périphériques, paraît assuré par les diagnostics réalisés alentour. Mais la quasi-absence de limites archéologiques structurantes, même matérialisées par des éléments matériels épars, pose naturellement la question de l’étendue réelle de cette occupation.

L’analyse stratigraphique révèle quatre grandes étapes dans l’évolution du site: une phase d’installation, avec la construction des bâtiments après une reconnaissance du sous-sol, l’occupation avec des aménagements et des niveaux ponctuellement conservés, la phase d’abandon marquée par l’effondrement des constructions et le recouvrement progressif du site par un processus de colluvionnement. L’emplacement de ces vestiges a constitué en effet un piège sédimentaire assurant, de fait, leur conservation.

Fig. 20 (à gauche) : Vue d’ensemble du bâtiment artisanal (cliché D. Billoin).
Fig. 21 (à droite) : Vue aérienne du bâtiment résidentiel (cliché D. Billoin).
Approches stratigraphique et géomorphologique
S. Rotillon, avec la collaboration de D. Billoin

Une bonne connaissance topographique

Le substrat calcaire du Valanginien (Us.4) est fortement lapiézé. Si l’Homme n’est pour rien dans la mise en place de cette unité, il a joué un rôle dans son évolution récente. Le contact net entre ce socle rocheux et toutes les unités sus-jacentes (niveaux d’occupation, murs, couches de démolition) plaide pour un décapage préalable à la réalisation de l’aménagement médiéval (fig. 23). L’absence d’horizon intermédiaire montre qu’il n’y a pas, ou peu, d’altération du calcaire; la base des murs repose directement sur le substrat; les formations superficielles, moins marquées par l’action de l’Homme, ne sont pas en contact direct avec la roche, mais recouvrent les niveaux d’occupation et de démolition. Tous ces éléments accréditent l’hypothèse d’une mise à nu de la roche, préalable à la construction des bâtiments. Ce constat est d’autant plus notable qu’un puits naturel de dissolution des eaux dans ce banc calcaire a été intégré au centre de l’une des pièces du second édifice et atteste ainsi une reconnaissance du sous-sol avant la construction.

La morphologie de détail du substrat a été mise à profit dans la construction de ces édifices construits tous deux à l’extrémité de la dalle calcaire, à la hauteur d’un ressaut. L’utilisation d’une diaclase sert ainsi de point d’appui à un mur du

Fig. 22: Plan général de l’occupation (DAO D. Billoin).
premier édifice, marquant une délimitation de l'espace intérieur excavé, et facilitant l'exploitation de la roche utilisée alors comme fondation et source de matériaux de construction. La déclivité de la pente naturelle facilite l'évacuation des déchets en contrebas. Le choix d’implantation du second édifice est assez similaire. Un secteur plan de la dalle rocheuse a été délibérément sélectionné et le bâtiment a été construit en bordure d’une rupture du banc tabulaire qui marque le début d’une zone irrégulière (fig. 24). Cette limite naturelle a été exploitée afin d’extraire des blocs calcaires utilisés dans les premières assises de la construction. Cette adaptation au sous-sol a conduit les hommes à remblayer certaines microdépressions afin de créer des niveaux dans le sol, notamment aux abords du premier édifice. Ces observations, réalisées en amont de l’implantation des constructions et motivant le choix de leur implantation, attestent une parfaite connaissance topographique des lieux et des contraintes du sous-sol. Ce constat suppose par ailleurs une couverture végétale peu dense, ou un défrichement préalable, conditions requises pour permettre cette lecture attentive des lieux.

Fig. 23 : Profils est-ouest du site à la hauteur du marger (M.37) et du bâtiment artisanal (DAO S. Guyot).

Fig. 24 : Comblement du bâtiment artisanal en cours de fouille (cliché D. Billoin).
L’abandon du site

Ces unités correspondent essentiellement à des colluvions déposées après l’abandon du site et donc en relation indirecte avec l’action de l’Homme. Le passage d’une couche à une autre n’est pas toujours très net, car les évolutions postdépositionnelles engendrent parfois un mélange sédimentaire ; les argiles sont entraînées vers le bas et tendent à combler les vides des niveaux de démolition. Il est cependant possible de distinguer les grandes lignes de l’évolution sédimentaire du site après son occupation.

À la hauteur du premier édifice, entre les murs M.3 et M.11, le terrain est légèrement déprimé. Cette dépression est accentuée par les murs qui sont globalement perpendiculaires à la pente. L’ensemble constitue un piège sédimentaire assez efficace, ce qui explique la plus forte épaisseur des sédiments fins au-dessus du calcaire en ce point. Trois unités principales peuvent être distinguées avec, de la base au sommet, les unités stratigraphiques 33, 26 et 6 (fig. 23) :
– argile de teinte brun sombre homogène comportant de très rares éléments grossiers (Us.33). La structure est polyédrique avec des agrégats de petites dimensions, peu résistants, aux faces légèrement émoussées. Le contact basal et latéral est assez tranché, marqué par un changement de texture et de couleur ; en revanche, le contact sommital est très diffus ;
– argile relativement proche de la précédente, avec une plus grande proportion d’éléments grossiers (Us.26). On trouve de nombreux fragments roulés d’argile cuite pris dans l’épaisseur du niveau, mais la proportion tend à décroître vers le centre de la coupe. Au toucher, on discerne une légère variation de texture et le sédiment apparaît un peu moins argileux que le précédent. Un tesson de céramique du haut Moyen Âge était inclus dans ce niveau ;
– argile légèrement limoneuse, de teinte brun sombre, de structure équivalente aux autres unités (Us.6). Les éléments grossiers sont rares. La limite basse est diffuse.

La première impression, à la lecture de ce profil, est celle d’une grande homogénéité d’ensemble. Les variations de faciès sont subtiles, peu nettes au premier abord et seul un examen plus approfondi permet de les mettre en évidence. Les limites entre les différentes unités stratigraphiques sont diffuses, illustrant un processus sans rupture dans la mise en place du matériel. Ces colluvions recouvrent systématiquement le niveau d’occupation (Us.22), mais aussi, lorsque la limite est nette, les couches de démolition. Le comblement de cette dépression se révèle donc sans doute postérieur à l’abandon et à la destruction de l’édifice. L’enrichissement en argile, apparent vers le bas, constitue sans doute la conséquence du lessivage, renforcé dans ce contexte de cuvette. L’impact de la dépression demeure cependant limité, aucune marque d’hydromorphie n’est visible comme dans les dolines qui piègent les colluvions (Gaiffe, Brucker 1985). La couche Us.26 s’insère totalement entre les murs M.3 et M.11 et le comblement Us.6 recouvre en revanche le sommet de ces derniers, en partie pour le second dont la face aval est pratiquement affleurante.

La cuvette naturelle constituée entre ces deux murs s’est donc comblée rapidement après l’abandon du site, car elle constituait un piège sédimentaire (fig. 24). L’évolution in situ a été plus longue que dans d’autres secteurs du site, ce qui explique le lessivage un peu plus net des argiles. Dès le haut Moyen Âge, limite basse, cette dépression devait avoir pratiquement disparu du paysage et le coluvionnement a commencé à recouvrir la totalité des vestiges, ce qui donne une assez brève durée de fonctionnement potentiel du piège sédimentaire. Les indices d’occupation présents à cet endroit (Us.26) sont difficiles à exploiter autrement.
qu’en repère chronologique. On ne peut parler de niveau d’occupation ni de destruction de l’occupation tant les données sont ténues. Le colluvionnement paraît donc globalement continu depuis l’abandon du bâtiment et sa destruction. La grande homogénéité du profil étudié ne permet pas de distinguer de phases d’interruption du processus.

Conclusion

Les observations géomorphologiques rendent possible la restitution, du moins en chronologie relative, de l’occupation mérovingienne de Pratz le Curtillet et de son abandon. L’installation prend place sur un replat, à proximité d’une ligne de sources qui émergent à l’occasion de changements de nature lithologique. Les occupants s’installent dans une petite dépression et sur l’une des parties les plus planes du secteur. Le calcaire est dénudé avant la construction des édifices. Les irrégularités du substrat sont alors mises au jour et servent en partie à structurer l’installation en s’y adaptant. Lorsque le site a été recouvert par colluvionnement, ces bâtiments étaient déjà en partie ruinés. Les restes de murs ont contribué à piéger une part importante des sédiments en transit sur ce versant. Ces vestiges disparaissent progressivement du paysage à un moment difficile à préciser, mais sans doute assez rapidement après son abandon. Une mise en culture des terres situées en amont sur la pente a naturellement pu contribuer à accélérer ce processus. Elles étaient cultivées à la fin du XIXe siècle, malgré la faible épaisseur de terre arable, avant que les terrains de ce plateau ne soient transformés en pâturage à vaches et à moutons, puis en terrain de football d’un côté et d’aviation de l’autre, des utilisations plus contemporaines qui s’expliquent par la rareté des terrains plats de ce secteur de montagne.

Le bâtiment artisanal

D. Billoin, avec la collaboration de C. Gaston

La structure du bâtiment

Implanté à la limite d’une rupture du banc rocheux, cet édifice est d’orientation sud-ouest/nord-est qui correspond à celle du plateau du Lizon (fig. 22). De plan rectangulaire, de 10 m de longueur sur 4 m de largeur, il est prolongé au sud-ouest, par une sorte d’appendice carré de 2,20 m de côté creusé dans la roche. À l’origine, un appentis en bois couvrait vraisemblablement la zone foyère se développant le long du mur M.3, englobant les murets M.16 et M.30, doublant pratiquement la surface de cet édifice (fig. 25 et 26). Les quatre murs délimitant la pièce excavée sont inégalement conservés et l’ensemble des vestiges a subi l’érosion. L’espace interne est excavé de 0,30 m en moyenne dans le socle rocheux, à partir d’une diaclase qui a facilité l’exploitation du banc calcaire et en bordure de laquelle le mur M.3 a été construit. Cette limite naturelle fait office de fondation et la roche a été ponctuellement retaillée afin de régulariser la partie intérieure du parement. Les blocs et les dalles brutes enlevés ont été mis en forme et utilisés dans la première assise de la construction. Ces murs, d’une épaisseur variant de 0,60 à 0,70 m, correspondent à une maçonnerie constituée de deux parements assisés et composés de blocs et de moellons ébauchés et d’un blocage de cailloux. Quelques petites pierres calcaires rubéfiées sont intégrées à ce blocage et plusieurs moellons portant également des traces de chauffe prennent
L’établissement de Pratz le Curtillet place dans ce parement. Ponctuellement, un liant d’argile mêlé de blocaille calcaire a été observé, mais il est difficile à distinguer des couches de recouvrement des vestiges, à base de terre argilo-limoneuse de même couleur et de même texture. Les petits nodules de chaux éparpillés sur la couche d’occupation, à l’extérieur du mur M.3, paraissent également trop épars pour être considérés comme un élément de liant. L’élévation des murs varie de une à huit assises, soit 0,85 m de hauteur maximum, en fonction de l’érosion, mais également d’une récupération des matériaux de construction après l’abandon du site (fig. 27 à 29). Ces parements sont composés de pierres de nature différente. Les trois assises inférieures sont constituées de moellons ébauchés de couleur blanche en calcaire dur, issus directement de l’exploitation de la dalle tabulaire, alors que les assises suivantes sont construites avec des moellons plus réguliers de couleur jaune, un calcaire plus tendre d’origine locale.

L’appendice carré, au sud-ouest du bâtiment, est délimité par le creusement de la roche suivant le tracé d’une diaclose, d’une entaille rectiligne perpendiculaire de la roche formant un retour, et par l’interruption d’un niveau de circulation extérieure marqué par une couche compacte de cailloutis calcaires. Ce niveau de circulation s’étend sur tout le pourtour de l’édifice, à l’exception des secteurs de roche tabulaire lessivée (fig. 26, Us.13/14, 22 et 25). Il vient s’appuyer contre les murs extérieurs et délimite bien l’emprise de la construction. L’absence de tout élément de construction dans cette partie de l’extension du bâtiment suggère l’emploi de matériaux périssables : un dispositif de poutres en bois posé directement sur la roche, comme une sablière basse. L’absence de moellons, y compris dans la couche de démolition, semble conforter cette interprétation, puisque le facteur d’érosion ne peut être mis en cause. En effet, les vestiges de deux murets parallèles extérieurs, au contact de cet appentis et conservés sur une à deux assises de pierre posées directement sur le socle rocheux, l’excluent. Conservés sur 1,30 m de longueur et mesurant environ 0,40 m de largeur, ces deux murs (M.16 et M.30) s’appuient perpendiculairement sur la façade nord.

Fig. 25 : Le bâtiment artisanal et ses abords à la hauteur d’un changement du socle rocheux (cliché D. Billoin).
Fig. 26: Plan d’ensemble du bâtiment artisanal et localisation des unités stratigraphiques (DAO S. Guyot).
de l’édifice et délimitent un espace de travail sur toute leur longueur (fig. 30 et 31). Quatre foyers sont en effet aménagés dans la roche à cet emplacement, à une distance égale du mur de façade et selon une répartition spatiale raisonnée, offrant l’image d’une file de foyers installés à intervalles assez répulsifs (fig. 26, n°s 35, 38, 34 et 18). Partiellement conservé à un parement, le mur M.16 en pierre sèche est composé d’un appareil simple de moellons en calcaire jaune, alors que le mur M.30, également en pierre sèche, est constitué d’appareil en profondeur, associant des moellons en calcaire jaune et de plus gros blocs en calcaire blanc mis en forme. L’espacement entre les deux murs est étroit, de l’ordre de 0,90 m de largeur. Bien que lacunaire, la couche d’occupation (Us.21)
qui occupe cet espace, au-devant de la façade et autour des foyers, se poursuit sans interruption entre les murs et à l'intérieur de l'édifice, suggérant un autre accès. Ces deux murs correspondraient à des solins formant alors une sorte de petit réduit desservant la zone de foyer depuis l'intérieur du bâtiment. Là aussi, la faible proportion de matériaux de construction relevés dans la couche de démolition – même déplacés par un effet de pente vers l'intérieur de l'édifice, constituant ainsi un bon piège sédimentaire – suggère l'emploi de matériaux périsposables, comme le bois (fig. 32). Un tel dispositif ne se justifie que s’il est accompagné d’une couverture afin de protéger efficacement des intempéries. Cette toiture, vraisemblablement un appentis accolé contre la façade de l’édifice, paraît également indispensable au regard des activités liées aux foyers qui prennent place dans cet espace. Mais, là comme ailleurs, la nature du sous-sol, ce banc de calcaire dur, a limité les creusements destinés aux supports de cet aménagement de couverture et les calages éventuels ne sont pas conservés. Les poutres qui supportaient cet appentis ont dû prendre appui directement sur la roche et n’ont laissé aucune trace. On remarque cependant que les deux murets en pierres sèches M.16 et M.30, disposés perpendiculairement à l’édifice, peuvent jouer en partie un rôle de support à une toiture protégeant cet espace de travail.

La physionomie de l’ensemble de l’édifice incite à proposer une hypothèse de restitution particulière. Le bâtiment en maçonnerie présente un plan allongé et une largeur réduite (4 m), plan rallongé encore par la présence d’une petite « annexe » au sud-ouest. Il semble par ailleurs que cette annexe s’appuie sur un prolongement du mur M.3 du bâtiment maçonné, comme l’indiquent sa position et l’aménagement dans la roche. Un autre élément déterminant vient s’ajouter à ces observations : derrière le bâtiment, la batterie de foyers métallurgiques nécessite l’installation d’un abri ouvert, de type appentis sur poteaux. Or, on voit que l’axe de symétrie longitudinal de ces foyers correspond à celui du bâtiment maçonné : ceci suggère donc que l’abri des foyers correspondait à la surface du bâtiment clos (fig. 33). On peut donc envisager le volume suivant : le bâtiment maçonné était composé d’une pièce en position excavée et de l’espace des foyers, couverts chacun d’une toiture en appentis, se rejoignant au sommet du mur M.3 du bâtiment maçonné, ce mur supportant donc la faîtière du toit en bâtière ainsi constitué. Le mur M.3 et l’appentis des foyers se prolongeaient cependant plus au sud, comme le suggèrent la position des foyers et la présence de l’annexe accolée à l’axe de la faîtière.
Fig. 30 (ci-dessus) : Plan de l'aménagement M.16 et M.30 du bâtiment (DAO S. Guyot, d'après C. Goy et S. Guyot).

Fig. 31 : Détail des murs M.16 et M.30 (cliché D. Billoin).
L’aménagement intérieur

Sous la terre végétale, la couche de démolition renferme des moellons mis en forme provenant des élévations des murs effondrés, essentiellement des pierres en calcaire jaune. Cette couche couvre un niveau d’occupation d’une épaisseur moyenne de 8 cm qui s’étend sur l’intégralité de l’espace interne de l’édifice (fig. 23, Us.28 et fig. 26). Elle est constituée d’une couche d’argile limoneuse grise compacte, mêlée à des petits nodules de chaux blanchâtre, des petites pierres et du charbon de bois, et se trouve directement au contact de la roche tabulaire qui offre de grandes surfaces lisses. Les diaclases et les anfractuosités du socle rocheux sont également partiellement comblées par cette couche selon un niveau régulier. Cependant, l’effondrement du bâtiment l’a passablement perturbée par l’enfoncement de moellons. L’occupation s’étend également dans l’appendice carré du bâtiment, surélevé d’environ 0,15 m de hauteur par un palier creusé dans la dalle calcaire. Les vestiges d’un foyer sont reconnus dans l’angle nord-est du bâtiment, à proximité de l’ouverture sur l’extérieur (Us.5). Cette structure est aménagée au moyen d’un cailloutis compacté, disposé contre une déclivité naturelle de la roche qui délimite une grande dépression arrondie colmatée par de l’argile limoneuse brune. Partiellement démantelé, le foyer épouse la bordure de cette dépression selon un plan concave, bien marqué par un impact thermique et par la présence de quelques grosses pierres rubéfiées. Bien que légèrement perturbée au contact du foyer, la couche d’occupation délimite une zone qui n’excède pas 1 m de diamètre environ, dimension qui correspond sensiblement à ce foyer.
L’établissement de Pratz le Curtillet

Fig. 34: Relevé et profil du foyer 18 (DAO S. Guyot).
Les foyers

Ces foyers se situent en périphérie immédiate du bâtiment (fig. 26, n° 35, 38, 34 et 18): quatre d’entre eux sont aménagés le long de la façade nord-ouest, constituant une véritable zone d’activité; un autre est localisé près du côté nord (fig. 26, n° 17). Des impacts thermiques relevés sur la dalle rocheuse, ainsi qu’une concentration de pierres rubéfiées, peuvent éventuellement constituer les vestiges démantelés d’un sixième foyer, placé à 3,80 m de distance de la façade nord-ouest M.3 de l’édifice (fig. 26, n° 39). Ils sont aménagés directement sur la dalle rocheuse dans la couche d’occupation qui s’étend sur cet espace (Us.21 et Us.22).

Une batterie de foyers sous l’appentis

Elle est constituée d’un alignement de quatre foyers (fig. 26, n° 35, 38, 34 et 18) implantés à égale distance entre eux et par rapport à la façade de l’édifice, à une distance d’environ 1 m. La disposition en file de ces foyers, parallèlement à l’axe longitudinal du bâtiment, suggère la présence d’un abri couvert de type appentis sur poteaux, nécessaire à leur utilisation (fig. 33).

Le foyer 18

Les observations sont limitées en raison de l’érosion qui marque cette structure faiblement enfouie. Ce foyer présente une forme particulière, en U, délimitée par une couronne de petites pierres calcaires rubéfiées, de 1,75 m sur 2,20 m, et partiellement refermée en direction de la façade de l’édifice (fig. 34 à 36). L’espace intérieur de la structure est partagé en deux parties sensiblement égales dans le sens de la longueur. Une sole est aménagée par des plaquettes de calcaires posées directement sur le socle rocheux, de manière à constituer un niveau régulier et plan d’un côté, alors que de l’autre, un espace vide, constituant une sorte de canal débouchant sur l’entrée du foyer, utilise une diaclase de la roche sur une profondeur de 0,15 m en moyenne. L’ensemble des matériaux requis dans cet aménagement porte de fortes traces de chauffe, variant du rouge au gris clair, témoignant d’une température très élevée, à la limite de la désagrégation du calcaire.
Fig. 37: Relevé du foyer 34 (DAO S. Guyot).

Fig. 38: Vue générale des foyers 18 et 34 (cliché D. Billoon).
Le mobilier contenu dans ce foyer et sur son pourtour immédiat est composé de fragments de récipients en pierre ollaire très chauffés et de nombreux petits fragments de tôle de bronze, notamment au centre de la structure. Les refus de tamisage ont également livré des petites écailles du même métal, des battitures et des poussières magnétiques provenant de l’intérieur du foyer.

Le foyer 34
Ce foyer est similaire au précédent, mais nettement moins bien conservé. Il présente une sole légèrement en creux, constituée de petites plaquettes en calcaire mises à plat et délimitée par des pierres calcaires et par le socle rocheux selon une forme quadrangulaire de 1,65 m sur 2,45 m. Une ouverture est visible par une interruption de la couronne de pierre qui constitue la paroi, en direction de la façade de l’édifice (fig. 37 et 38). L’ensemble porte des traces de chauffe importantes. Aucun résidu métallique n’a été retrouvé dans le foyer malgré le tamisage. Seuls des fragments de vaisselle en pierre ollaire chauffée sont présents à l’intérieur comme à proximité immédiate.

Le foyer 38
Ce foyer est de forme circulaire de 0,25 à 0,33 m de diamètre, légèrement en cuvette, d’une profondeur de 0,15 m dans le banc rocheux (fig. 26). Toutes les petites pierres calcaires à son pourtour sont fortement chauffées et son remplissage est dense en cendres et en charbons de bois. Aucun mobilier n’est présent, ni à l’intérieur ni à proximité immédiate.

Le foyer 35
Situé à 1,60 m de la façade de l’édifice et à proximité du couloir d’accès délimité par les murets 16 et 30, ce foyer est en partie démantelé par l’érosion (fig. 26). Il se présente sous la forme d’une concentration de nombreuses petites pierres calcaires fortement chauffées, entourant une cuvette comblée d’une matrice de cendres et de charbons de bois de forme globalement circulaire de 0,50 m de diamètre. Ses parois sont évasées, son fond, d’une profondeur de 0,15 m, est relativement plat. Par son aspect rubéfié, l’ensemble de ces matériaux se distingue de la couche d’occupation Us.21 se développant dans cet espace. Des battitures et des petits fragments métalliques en fer ont été retrouvés dans les refus de tamis près de ce foyer, indiquant une activité de forge.

Les autres foyers

Le foyer 39
Une érosion importante marque ce secteur plus éloigné de l’édifice, en amont sur la pente et directement au contact avec le socle rocheux (fig. 26). Il en résulte la disparition de la couche d’occupation, conservée seulement dans les anfractuosités de la roche seulement. Ce foyer est caractérisé par une sole argilolimonéuse durcie par le feu, formant une petite cuvette de plusieurs centimètres d’épaisseur et de forme circulaire d’environ 0,25 m de diamètre. Aucun mobilier ni aménagement particulier n’est à noter, hormis quelques petites pierres calcaires rubéfiées disposées sur une partie de son pourtour. Cette situation est certainement en relation avec l’érosion prononcée de ce secteur directement au contact du banc rocheux.
Le foyer 17
Ce foyer, de forme à peu près circulaire d'environ à 0,30 m de diamètre, est installé dans la couche d'occupation Us.22 au nord-est du bâtiment, à 0,90 m du mur M.2 (fig. 26). Il est caractérisé par une croute d'argile rubéfiée assez compacte de couleur brique, variant de 2 à 3 cm d'épaisseur, et installé sensiblement au centre d'une cuvette de la roche. Les traces de rubéfaction se diffusent du centre du foyer à sa périphérie, selon un impact thermique important au contact du calcaire, fissuré et de couleur gris-rouge.

La fonction des foyers
Ces structures de combustion peuvent être classées en deux catégories selon leur degré d'élaboration et leur taille. Les plus simples sont aménagées à même le sol, dans une cuvette assez peu profonde d'un diamètre variant de 0,25 m à 1 m (fig. 26, n° 17, 38, 35 et 43). Les sols sont constitués d'argile compacte, parfois mêlée de petit cailloutis calcaire, et délimitées par des blocs calcaires de différentes tailles. Uniformes, ces foyers, relativement communs sur les habitats du haut Moyen Âge, sont interprétés comme des structures à fonction domestique, essentiellement culinaire. Cette attribution est corroborée le plus souvent, lorsque l'observation est possible, par leur situation toute proche ou au sein même des constructions de type habitat, notamment dans l'espace intérieur le plus vaste, considéré alors comme la pièce à vivre. Toutefois, la présence de quelques scories et de battitures à proximité immédiate des foyers 35 et 38 témoigne d'une utilisation peut-être épisodique pour le travail de forge. D'autre part, la répartition spatiale des macrorestes végétaux autour de ces deux foyers indique une concentration élevée de millet conservé par carbonisation, suggérant peut-être une étape de préparation de cette céréale (grillage ?).

Les foyers 18 et 34, plus élaborés et de plus grandes dimensions, sont pourvus d'une couronne de protection ménageant un accès sur le petit côté de la structure. Cette ouverture, disposée en direction de la façade de l'édifice, correspond peut-être à l'emplacement d'un système de soufflet manuel. Mieux conservé, le foyer 18 révèle un espace interne divisé dans le sens de la longueur en deux parties sensiblement égales. Les similitudes de ces deux structures, tant dans les dimensions que par leur aspect architectural, attestent des utilisations spécifiques. Les traces de chauffe relevées sont importantes et témoignent de montées à haute température ayant conduit à l'altération du calcaire. On estime généralement qu'il faut atteindre la température de 800 °C au minimum, pour réduire le calcaire en chaux, or la chaleur produite dans ces foyers est inférieure à ce seuil mais paraît cependant trop élevée pour des activités domestiques. Le mobilier issu du comblement du foyer 18 et de son pourtour immédiat est composé de fragments de récipients en pierre ollaire chauffés, ainsi que de nombreuses petites écailles et de tôles en alliage cuivreux, des battitures et des poussières magnétiques. Ces éléments indiquent une activité de forge. L'hypothèse de fours ne peut pas être retenue pour ces deux structures, aucun indice matériel tel que des éléments de dôme en terre cuite ou en pierre n’a été retrouvé à proximité ni dans les comblements.

Fonction mixte pour deux d'entre eux au moins et usage apparemment réservé au travail de forge et d’autres métaux pour les autres, leur association par type dans la file située sous l’appentis du bâtiment n’est sans doute pas anodine et renvoie à une organisation de cet espace.
La fonction du bâtiment

Le mobilier retrouvé dans la couche d’occupation Us.24 ne nous éclaire pas beaucoup sur la fonction de l’édifice. Très lacunaire, cette pièce du bâtiment est le secteur du site qui a livré le moins de mobilier, toutes catégories confondues, un constat évoquant un entretien quotidien et une récupération lors de la phase d’abandon du site. La répartition spatiale des éléments découverts dans la couche d’occupation montre néanmoins une prédilection pour le pourtour du foyer 5, qui aurait ainsi joué le rôle de pôle de l’espace interne. Deux pierres à aiguiser sont localisées à proximité, de même que quelques fragments de céramiques, ainsi qu’un ardillon de boucle de ceinture en bronze, des éléments ferrreux et trois morceaux informes en plomb. Des scories de petite taille associées à des battitures sont concentrées dans l’angle nord-ouest du bâtiment, notamment deux scories internes d’aspect coulé (catégorie 3). Ce type de déchets se présentent sous la forme de petites masses scorifiées et effilées, marquées par de nombreuses empreintes de charbons de bois, caractéristiques d’un travail de forge d’élaboration. Un fragment de paroi de foyer à revêtement argilosableux, marqué d’un seul côté par une forte altération thermique (catégorie 2), a été recueilli près du foyer, alors qu’un autre rebut similaire en terre cuite est issu de son remplissage, la partie inférieure du comblement livrant trois scories en culot, déchets caractéristiques produits par les bas foyers de forge (catégorie 7). Ces éléments attestent un travail de forge associé à ce foyer.
La batterie de foyers organisés placée sous l’appentis reflète à l’évidence une gestion spatiale raisonnée des activités. Cette organisation, encore peu connue dans un bâtiment de cette période, illustre une vocation artisanale ; une telle file de foyers dépassant le cadre domestique, l’aspect particulier et élaboré des foyers 18 et 24 est à mettre en relation avec un atelier de forge.

Le mur de délimitation M.11-37

Éléments de construction

Ce mur en pierres sèches d’une épaisseur de 1 mètre, observé sur une longueur d’environ 38 mètres, est implanté en partie sud-est de l’établissement, à une distance de près de 4 mètres en contrebas du bâtiment artisanal. Son tracé non rectiligne présente une courbe étirée assez régulière (fig. 26 et 39). Conservée sur cinq à six assises en moyenne, soit une hauteur avoisinant généralement le mètre, sa construction s’interrompt progressivement jusqu’à présenter une seule assise à ses extrémités. Il est composé d’une maçonnerie fourrée, constituée de deux parements assisés de gros moellons ébauchés en calcaire blanc (dimension moyenne: 80 x 50 x 20 cm), de blocs calcaires bruts provenant du banc rocheux (dimension moyenne: 69 x 48 x 35 cm) et d’un blocage de cailloux, principalement en calcaire jaune (fig. 39 et 40). Quelques pierres calcaires brulées sont intégrées à sa construction, évoquant des réfections ponctuelles et des empilements opportunistes par l’épierrement de jardins ou de cultures. La partie sud de son tracé, enregistrée sous le numéro 37, diffère sensiblement par un blocage moins dense en petits éléments et vient s’appuyer sur le mur M.11. Cette différence de construction semble correspondre au début d’une prolongation de ce mur.
Fig. 39 (ci-dessus) : Profils du mur M.37 (DAO S. Guyot).

Fig. 40 (ci-contre) : Vue partielle du mur M.37 (cliché D. Billoin).
Une coupe réalisée dans le mur fait apparaître une fondation directement posée au contact du banc rocheux, à l’exception d’une portion de son tracé à l’emplACEMENT d’une dépression naturelle de ce banc (fig. 23 et 41). Cette anomalie du terrain a été remblayée par une couche de cailloutis calcaires de moyen calibre, de couleur blanche (largement majoritaire) et jaune, dans une matrice argilo-limoneuse, afin de régulariser cet espace. Ce niveau s’étend jusqu’à l’arrière du bâtiment artisanal et comble également une autre dépression située à l’angle nord-ouest de l’édifice. Une couche d’occupation de teinte plus grise vient couvrir ce niveau de circulation et s’interrompt au contact du mur de délimitation. Au-delà, on retrouve la séquence sédimentaire habituelle qui marque le terrain naturel, sans élément anthropique.

La fonction du mur M.11-37

La puissance de cet aménagement, et surtout sa longueur et son tracé sinuexes, évoque une structure de délimitation de l’espace autour de l’établissement mérovingien. Son orientation reprend sensiblement celle du banc rocheux du plateau, et correspond en particulier à la rupture de pente qui marque sa bordure, dont le dénivelé s’accentue plus bas, en direction du sud/sud-est. La route actuelle qui traverse le plateau suit globalement cette orientation, mais les travaux routiers de la fin du xixe siècle ont entamé cette rupture naturelle du fait des besoins d’élargissement liés à la circulation. Si l’on ne connaît donc plus la topographie initiale, ces éléments permettent de proposer l’hypothèse que ce mur marquait bien la limite de l’établissement mérovingien, son tracé particulier pouvant épouser le bord d’un chemin.

L’aspect du mur est en tout point comparable à ce qu’on appelle régionalement des « murgers », c’est-à-dire des murets en pierres sèches constitués d’épierrements, faisant office de délimitation de parcelles vouées à l’agriculture et d’enclos pour le pacage du bétail. Ces aménagements, on ne peut plus robustes, sont particulièrement adaptés à ces régions calcaires à faible couverture sédimentaire sur la roche. Ils remplacent avantageusement les structures plus habituelles sur
les habitats médiévaux, telles que les fossés et les palissades, difficilement concevables dans des lieux où la roche est sous-jacente. Ces aménagements, encore en usage avant l’industrialisation agricole, sont conservés dans de nombreux secteurs du massif, y compris à basse altitude, et forment parfois des réseaux complexes de parcellaires, particulièrement bien conservés en milieu forestier (enrichement). Au contraire, dans les zones de plaine, les pratiques agricoles modernes, mécanisées et consommatrices de grands espaces, ont définitivement effacé ces structures du paysage.

Ce mur de délimitation constitue sans doute l’un des ultimes vestiges conservés d’un système parcellaire organisant l’espace autour de l’établissement mérovingien, dans l’un des rares secteurs épargnés par l’agriculture du xixe siècle.

Le bâtiment résidentiel

Implanté à proximité d’une rupture naturelle de la dalle rocheuse, non loin du bord du plateau du Lizon, cet édifice révèle, comme le précédent, une orientation sud-ouest/nord-est qui correspond à celle du plateau (fig. 22). De plan rectangulaire de 16 m sur 13 m, il est flanqué d’une annexe de 6 m sur 5 m à l’angle nord-ouest. L’ensemble de la construction présente cinq pièces distinctes, munies chacune d’un accès intérieur ou extérieur (fig. 42 et 43). Sa construction s’appuie directement sur le socle rocheux, régulier et plan dans ce secteur, et affiche des murs d’une épaisseur moyenne de 0,60 m, constitués d’une maçonnerie fourrée de blocaille calcaire composée, le plus généralement, de parements assisés, de moellons ébauchés et de blocs naturels.

L’élévation, qui repose ponctuellement sur une fondation débordante de gros blocs (M.145), est conservée sur une hauteur de une à quatre assises au maximum, soit de 0,25 à 0,50 m (fig. 44 et 45). Aux points les plus hauts de ces élévations, les murs sont à peine enfouis dans la terre végétale, voire affleurant dans la paume. Ponctuellement, un liant d’argile mêlé à de la blocaille calcaire est observé, mais il reste difficile à distinguer des couches de recouvrement des vestiges à base de terre argilo-limoneuse de même texture. Aucune différence d’épaisseur, de matériaux ou de technique de construction ne permet de différencier les murs extérieurs des autres, à l’exception du mur M.148 qui sépare les pièces C et D, assimilable à un solin moins important, vraisemblablement surmonté d’une cloison en bois.

Les accès sont au nombre de trois, bien que la fermeture orientale de la pièce D pose problème en raison de son mauvais état de conservation. Deux d’entre eux permettent d’entrer dans la pièce A : celui ouvert au sud dans le mur M.139, d’une largeur de 2 m, se trouve délimité par des piédroits constitués de moellons ébauchés de taille plus importante disposés en boutisse ; l’autre, d’une largeur de 0,90 m, s’ouvre dans le mur M.145, à l’angle de l’édifice (fig. 42). Il est composé d’un piédroit de taille plus modeste et d’un assemblage de trois gros blocs calcaires grossièrement mis en forme. Cette ouverture vers l’extérieur est plus complexe et bénéficie d’un dispositif d’aménagement intégrant une partie du mur de l’annexe d’angle M.143 qui en constitue le prolongement, et d’un dallage de plaquettes de calcaire jaune, posées sur la roche dans une matrice argileuse. L’ensemble forme une légère chicane, créée par les vestiges du mur M.133 venant s’appuyer sur l’angle nord-est de l’annexe et prolongeant, avec un décalage, le mur M.143. Conservé sous l’aspect d’un seul alignement de gros blocs sur une longueur de 5 m, ce mur correspond à un système de clôture ou de découpage de l’espace, à l’exemple du mur de délimitation M.11-37, situé en
Fig. 42 (ci-dessus) : Relevé du bâtiment résidentiel et localisation des unités stratigraphiques (DAO S. Guyot).

Fig. 43 (ci-contre) : Vue générale du bâtiment résidentiel (cliché D. Billoin).
Fig. 44: Relevés des élévations des murs (DAO S. Guyot).
Fig. 45: Relevés des élévations des murs (DAO S. Guyot).
contrebas du bâtiment artisanal. La pièce D possède une ouverture de 0,80 m de large, centrée, marquée par une interruption du mur M.146. Le mauvais état de conservation de la partie orientale de cet espace empêche d’y lire la possibilité d’un autre accès sur l’extérieur.

Les aménagements intérieurs

Foyer et potager: la pièce A

Rectangulaire (dimensions intérieures: 5,30 m sur 6,75 m) et d’une surface de 35,8 m², la pièce A est située à l’angle nord-ouest de l’édifice et offre deux accès sur l’extérieur, ainsi que deux autres accès internes permettant des communications avec les pièces B et C (fig. 42). Cette configuration laisse supposer son rôle central dans la distribution du bâtiment et de ses abords, d’autant qu’elle peut facilement desservir l’annexe accolée, toute proche. La présence d’un foyer (130), d’un aménagement rappelant un potager (129) adossé au mur M.141 et enfin la densité de mobilier – plus importante que partout ailleurs dans l’édifice – confirment qu’il s’agit bien de la pièce à vivre principale. Conservé sous la forme d’un impact thermique d’environ 1 m² sur la roche, le foyer est installé au centre de la pièce, avec un décalage vers le sud, sans doute pour ne pas entraver la circulation intérieure vers la pièce C, mais également vers l’extérieur, par les accès au nord comme au sud (fig. 42). Il est de plus placé en vis-à-vis de l’aménagement 129, disposé à l’angle sud-est de la pièce. Large de 0,80 m pour une longueur totale de 2,80 m, cette structure construite en pierre sèche est interrompue dans sa moitié sud par deux niches de 0,30 m de largeur. L’ensemble forme une surface relativement plane et surélevée. Cet aménagement peut être interprété comme un massif de maçonnerie de type potager, c’est-à-dire un type particulier d’installation fixe de cuisson. Même si le nom de potager pour désigner ce type de fourneau en pierre n’apparaît, semble-t-il, qu’au xviième siècle, on trouve des aménagements proches dès l’Antiquité, dans un certain nombre de cuisines (Adam 1989, p. 332) (fig. 47). Ce type de structure a aussi été retrouvé en Gaule romaine, plutôt en contexte tardif, comme dans la domus des Bouquets à Périgueux (Collectif 1995, p. 81), à Ahrweiler, près de Coblenz en Allemagne (Van Ossel 1992, p. 227) ou à Ahuy en Côte-d’Or (Devevey, Gaston 2009). Pour la période médiévale, il semblerait que des foyers maçonnés aient existé en Suisse depuis le xive siècle. L’iconographie figure des représentations de foyers maçonnés médiévaux un peu différents des potagers

Fig. 46 (à gauche): Détail de la pièce A, avec un foyer au premier plan et le potager à l’angle sud-ouest (cliché D. Billoin).

Fig. 47 (à droite): Le potager antique de la maison n° 6 (Insula 16, Reglo 1) de Pompéi (cliché C. Gaston).
plus récents : il s'agit généralement d'un foyer surélevé sur lequel sont posées des braises ou des bûches enflammées (fig. 48). Ce foyer est situé sous une cheminée et l'évacuation des fumées se fait par la cheminée voisine ou par la fenêtre.

La pièce B
Une porte ouverte dans le mur M.142 met en communication les pièces A et B, placées au sud-ouest du bâtiment. Large de 1,90 m, elle est délimitée de part et d'autre par des blocs calcaires disposés en boutisse, alors qu'un autre bloc est placé au centre de cette ouverture sans qu'on puisse en expliquer l’utilité, mais il n’est pas certain que cet élément soit en place. D’une surface de 30,4 m², cette pièce rectangulaire (dimension intérieure : 6,75 m sur 4,50 m) possède un puits en son centre (fig. 42 et 49). Il s’agit d’une structure naturelle issue de la dissolution du calcaire, un phénomène karstique dans le prolongement d’une petite diaclase en formation, agrandie afin d’en permettre une utilisation domestique. Le banc rocheux supérieur porte en effet des impacts d’outils sur son pourtour, créant une ouverture ovoïdale d’environ 0,60 m (fig. 50). Le second banc de roche, situé à 0,30 m de profondeur, n’a quant à lui pas été élargi et l’ouverture se réduit donc à moins de 0,50 m, formant une petite banquette sur tout le pourtour de la structure. Cette ouverture reste à peu près constante jusqu’à 2 m de profondeur, puis se rétrécit à nouveau pour devenir très irrégulière et réduite à quelques trous naturels vers le fond, à 3 m de profondeur (fig. 51). L’analyse du comblement montre que la fouille a en réalité largement dépassé son niveau d’utilisation. En effet, le remplissage de fond (Us.119) correspond à un comblement argileux compact et stérile, résultat d’un dépôt naturel sur lequel s’accumulent les couches anthropiques, ramenant sa profondeur à 2 m au moment de l’occupation. Hormis une couche peu épaisse, similaire au niveau d’occupation (Us.109), quatre niveaux de comblements se succèdent (Us.115 à 118), composés de terres argileuses grises renfermant des petites pierres, du charbon de bois et du mobilier pour les couches Us.115 et 116, beaucoup moins riches pour les deux suivantes (Us.117 et 119), caractérisées par des argiles brunes compactes et d’aspect plus homogène.
La position centrale de ce puits karstique dans la pièce suppose un plan de l’édifice préconçu et adapté aux anomalies de la roche, tout comme d’ailleurs son implantation générale en bordure du banc calcaire. Cette connaissance du sous-sol indique que le banc calcaire était sans doute plus affleurant qu’aujourd’hui, ce qui a permis de déceler toutes ces particularités.

Ces phénomènes karstiques correspondent à des poches souterraines de dissolution du calcaire, l’eau s’infiltrant plus en profondeur. En l’absence de colmatage particulier assurant une étanchéité à la structure, une utilisation comme réserve ou puits à eau semble exclue. Une structure de conservation de denrées alimentaires pourrait être envisagée, la banquette taillée dans sa partie supérieure facilitant la mise en place d’un système de fermeture en bois.

Fig. 51 : Profil du puits (DAO S. Guyot).
Les pièces C et D

Occupant la partie est de l’édifice, ces pièces sont séparées par une cloison en pierre sèche (M.148) dont l’effondrement et le volume des matériaux montrent qu’elle atteignait une hauteur inférieure à celle des autres maçonnies de l’édifice. Ce mur de refend, avec son orientation maladroite et sa facture sommaire incluant des blocs plus réduits que les murs gouttereaux, évoque une simple cloison destinée à supporter une sablière basse pour une élévation en terre et bois. Très allongée et étroite (dimensions intérieures : 8,50 m sur 4 m), la pièce C couvre une superficie de 34 m² et communique avec les pièces A et D. Une porte de 1,30 m de large s’ouvre dans le mur M.141, dans le prolongement de l’accès extérieur ouest du bâtiment, alors que l’interruption du support de la cloison M.148 ménage un accès de 0,70 m avec la pièce D. Il s’agit de l’ouverture la plus étroite enregistrée dans l’édifice (fig. 42).

La pièce D, de plan rectangulaire (dimensions intérieures : 8,50 m sur 7 m), est pourvue d’un accès extérieur vers l’est, centré dans l’espace interne. Cette ouverture, inutile dans le cas d’un espace ouvert, indique que le mur sud était bien présent à l’origine. Il a probablement été victime de l’érosion, comme l’indiquent les lacunes observées sur cette façade du bâtiment. Cette pièce, la plus spacieuse du bâtiment, est d’une superficie avoisinant les 60 m². La taille importante de ces deux pièces, leur disposition à l’intérieur de l’édifice ainsi que leurs dimensions supposent des utilisations spécifiques peu explicites en l’absence d’aménagements intérieurs. Une fonction d’espaces destinés à abriter du bétail et à l’engrangement du fourrage est envisagée, ces interprétations seront discutées plus loin dans l’analyse architecturale.

L’annexe accolée

Cet appendice carré de 4 m de côté se greffe sur l’angle nord-ouest de l’édifice (fig. 42). Il présente un accès d’environ 1,4 m ouvert dans le mur sud, à proximité de l’un des accès du bâtiment. Les murs qui le composent mettent en œuvre des blocs calcaires plus imposants que dans le reste de la construction, représentant parfois toute l’épaisseur des murs. Cette technique de construction différente suggère des élévations moins importantes, des murs-bahuts sur lesquels aurait pris appui une structure en matériaux périssables. De plus, il n’est guère possible d’évoquer une érosion affectant la conservation des éléments de construction dans les couches d’abandon, ou une éventuelle récupération méthodique limitée à cette partie de l’édifice et s’interrompant à la hauteur des premières assises.

L’utilisation d’un tel espace aménagé en annexe suppose la pratique d’activités artisanales considérées comme indésirables à l’intérieur du bâtiment lui-même, soit par manque de place ou du fait d’inconvénients divers. Relativement bien conservée, la couche d’occupation de cette annexe a livré un mobilier important, notamment métallique, qui peut accréditer cette hypothèse. Toutefois, elle reste très lacunaire à l’intérieur de l’édifice, si bien que cette richesse est toute relative et peut tout aussi bien être mise sur le compte d’un facteur de conservation des sols.

Cette annexe pourrait jouer le rôle dévolu aux fonds de cabanes situés le plus souvent à proximité des habitats du haut Moyen Âge, comme sur l’établissement de la Queue au Loup à Delle (Billoin 2010). Ces emblématiques structures excavées, si fréquentes à cette période, ne sont vraisemblablement pas présentes sur l’établissement mérovingien de Pratz en raison de la nature du sous-sol : un socle tabulaire qui interdit pratiquement tout creusement.
Les matériaux de construction

Deux types de calcaires ont été utilisés dans la construction des édifices. Le premier est d’origine locale et sert pour les fondations et les premières assises. Il s’agit d’un calcaire dur, de couleur blanche, se prêtant difficilement à la taille et la mise en forme. Les gros blocs dégrossis, retrouvés généralement à la base des murs et constituant une grande partie de l’annexe accolée au bâtiment résidentiel ou aux murs de clôture, correspondent à l’exploitation du banc rocheux, à quelques mètres des édifices. Le second calcaire est de teinte blonde tirant vers le roux, plus tendre, se prêtant mieux à la taille et à la mise en forme. L’analyse des élévations des deux bâtiments révèle qu’il a été utilisé pour les parties hautes des maçonneries du fait de ces qualités (fig. 28 et 29).

Si aucune étude lithologique des différents faciès calcaires de la région n’a pu être engagée, il apparaît que plusieurs formations locales pourraient correspondre à cette nature de roche. Le Valanginien présente à son sommet un complexe formé de calcaire roux, mais est mieux représenté dans la partie est de la région. L’Hauterivien offre dans sa partie supérieure le faciès de la pierre jaune de Neuchâtel. Le Barrémien, enfin, est constitué à son sommet par des calcaires ocre. Le faciès urgonien de cet étage (marbre) était exploité dans la région de Pratz, notamment au sud du village actuel. Il s’agit dans tous les cas de zones d’approvisionnement assez proches, certaines situées directement en amont de la pente.

L’analyse comparative des bâtiments

La plupart des établissements ruraux du haut Moyen Âge sont construits en bois et livrent essentiellement des négatifs de bâtiments de plain-pied, n’offrant que de maigres informations sur les modes architecturaux mis en œuvre et sur les aménagements intérieurs. Généralement, ces conditions sont peu favorables à l’analyse de ces espaces dépourvus de vestiges de cloisonnement et des divers équipements en rapport avec leur fonction. Bien souvent, l’emprise au sol de ces bâtiments sur poteaux et la présence éventuelle d’un foyer constituent pratiquement les seuls arguments permettant de distinguer l’habitat des constructions annexes. Avec l’utilisation de la pierre et un état de conservation assez satisfaisant, les deux bâtiments mis au jour à Pratz font exception. Leurs maçonnies livrent en effet des plans complets qui révèlent de multiples aménagements, à commencer par le cloisonnement des diverses pièces, les portes ouvertes sur l’extérieur ou les accès internes, ainsi que divers aménagements propres à certaines pièces. Ces maçonnies ont également constitué des obstacles à l’érosion, livrant ainsi des couches d’occupation, certes lacunaires, mais apportant des éléments matériels. L’ensemble de ces vestiges bâtis offre une occasion rare d’étudier la fonction des différentes pièces et d’aborder la restitution des édifices.

L’édifice résidentiel

La puissance des maçonnies révèle un édifice solidement construit, comme le confirme le recours à des blocs de dimensions très imposantes, notamment des blocs de libage occupant toute la largeur des murs (0,60 m). Malgré une récupération constatée ponctuellement, le volume des matériaux de construction issus de la couche de démolition trahit une élévation entièrement en pierre,
montant de fond en comble (ou du moins jusqu’à la hauteur des murs gouttereaux), avec des moellons calcaires à sec ou à liant argileux, comme sur les bâtiments de Larina, à Hières-sur-Amby en Isère (Porte 1980). L’utilisation de planches de bois pour une partie de l’élévation de l’étage est également possible, en lambrissure, assurant un séchage du fourrage dans de bonnes conditions. On ne peut toutefois pas exclure complètement que les murs intérieurs aient été constitués d’une structure en matériaux périssables, une ossature en bois hourdée de torchis sur clayonnage prenant appui sur des murs-bahuts en pierre (fig. 52 et 53). Cette option architecturale est attestée dans l élévation du bâtiment de l’établissement mérovingien de Delle, où les murs sont d’une largeur similaire (Billoin 2010). Dans les deux cas, les ouvertures de ces édifices devaient être réduites, principalement pour des raisons climatiques, mais aussi par l’absence de fermeture vitrée (présence éventuelle de peaux huilées tendues sur des cadres).
L'annexe au nord-ouest pose d'autres problèmes. De plan carré, elle présente une maçonnerie plus sommaire, peut-être liée à une élévation en matériaux périssables. Une cavité, à l'origine naturelle et aménagée en citerne, occupe le centre de l'espace. L'angle sud-est de cette pièce vient s'appuyer sur celui du corps principal, lequel forme ainsi une saillie dans l'annexe. Cette dernière caractéristique rend difficile le choix d'une couverture.

Le plan rectangulaire de l'édifice résidentiel, caractérisé par deux travées perpendiculaires aux murs gouttereaux, reflète la traditionnelle séparation entre la travée d'habitation et la partie agricole, la seconde occupant toujours une surface plus importante que la première. Le cloisonnement malhabile de la partie agricole (M.148) semble n'avoir dans ce cas aucune fonction structurelle.

Fig. 54: Schéma d'ensemble du bâtiment résidentiel et d'édifices similaires en Franche-Comté (DAO C. Gaston).
1. Même si l'unité de mesure en pied, à cette époque et dans un tel contexte, a de fortes chances de présenter une valeur plus « réelle » et locale que strictement standardisée (Federici, Fellner 2004, p. 212).

2. Le bâtiment de Delle est construit sur la base d'un rectangle de 9,70 m sur 19,40 m.

3. Sur le corpus de bâtiments carolingiens en bois étudiés à Château-Gaillard (Ain), les portées maximales excèdent rarement 5 m de long (Vicherd 2001, p. 208).

4. Ces édifices peuvent atteindre des dimensions remarquables; ainsi, la ferme-musée du Montagnon, à Grandfontaine-Fournets, forme un quadrilatère de 19 m sur 18 m.

(séparation, par exemple, de l'espace étable et de l'espace grange). La taille et la subdivision de l'espace constituent une disposition assez fréquente dans l'architecture rurale du haut Moyen Âge (Chapelot, Fossier 1980). Cette dernière montre un rapport proportionnel entre partie habitat et partie agricole, toujours logiquement au bénéfice de la seconde, comme on peut l'observer sur des bâtiments régionaux sensiblement contemporains: 1 pour 1,5 à Delle et Pratz, 1 pour 1,25 à Salins (fig. 54). La surface de la pièce commune, abritant le foyer, est en moyenne de 40 m² (36,4 pour Pratz, 37 pour Salins, 44 pour Delle).

Le plan de l'espace principal, qui comprend les deux pièces d'habitation, est fondé sur un schéma simple que l'on retrouve par ailleurs (fig. 55), soit un rapport de 1 pour 2 entre longueur et largeur (6,60 m sur 13,5 m, soit 22 sur 45 pieds1). On retrouve une proportion semblable à Delle, mais avec des dimensions plus importantes2. Une couverture à deux pans serait alors la solution la plus logique pour cet espace, avec pignons ou croupes au nord et au sud, la portée correspondant à une dimension moyenne classique (5 m)3. La tradition régionale permettrait en effet d'envisager une hypothèse: les fermes de moyenne montagne du Haut-Doubs et du Haut-Jura sont de vastes édifices à plan ramassé4, regroupant au sein d'une même « maison-bloc » la partie habitations, mais également l'étable, le fourrage nécessaire aux animaux, les réserves de nourritures et de bois pour les longs mois d'hiver où les habitants restaient isolés. Sous la vaste toiture à deux pans de ces édifices – dont la charpente, véritable prouesse technique, est constituée de poutres souvent faites d’arbres entiers –, on stockait le foin qui constituait également un excellent isolant thermique.

Fig. 55: Schéma d’organisation du bâtiment résidentiel et d’édifices similaires en Franche-Comté (DAO C. Gaston).
La couverture, avant d’être remplacée par la tuile, était en tavaillons de l’épicéa, matériau abondant dans la région; le rez-de-chaussée est en pierre, et la façade soumise aux intempéries est souvent isolée par une lambrequine de tavaillons. Peut-on envisager une telle configuration ici? D’un point de vue structurel, rien ne s’y oppose: il existe une continuité constructive entre les murs M.144 et M.145 (même largeur, mêmes modules de blocs calcaires), ainsi qu’entre les murs M.145 et M.146. La seule complexité réside dans la charpente. La partie habitat ne présente pas de difficultés, les murs est et ouest formant pignon, supportant ou remplaçant les fermes; le franchissement de l’espace de grange est plus délicat, car il atteint 9 m. Même si un tel franchissement est techniquement possible, il semble plus prudent d’envisager un ou plusieurs supports sur l’axe central nord-sud, supportant une ferme intermédiaire. L’absence de traces de ces supports ne permet cependant pas de confirmer cette hypothèse, bien que cette absence puisse être expliquée par la mise en place d’un simple poteau de bois de renfort directement placé sur la dalle calcaire, soulageant ainsi la charge des combles. La restitution du volume d’élévation et de couverture de l’ensemble peut être envisagée de manière très hypothétique. La tuile n’est pas utilisée puisque seuls quelques menus fragments de tegulae ont été retrouvés disséminés sur l’établissement. Le choix du chaume pourrait être envisagé, mais la pente nécessaire à une telle toiture, 45 à 60°, conférerait une hauteur exagérée à l’ensemble. Si l’on se tourne à nouveau vers l’ethnographie architecturale de la région, l'utilisation du bois permettrait une toiture plus légère et à pente plus faible, de l’ordre de 20 à 30°, ce type de couverture étant idéal pour les grandes surfaces. Enfin, la liaison de ce bâtiment avec l’annexe au nord-ouest poserait des problèmes identiques à ceux déjà évoqués plus haut, même si une couverture en bois résiste mieux à l’humidité que du chaume. La pénétration des deux volumes, y compris sur 2 m de longueur seulement, supposerait un aménagement indispensable, avec la mise en place en particulier d’une gouttière d’évacuation commune. Pour éviter une telle connexion de couvertures, il suffirait cependant d’augmenter l’élévation du corps principal, comme cela était envisagé dans la restitution proposée, mais ici la hauteur nécessaire serait moins importante. Quoi qu’il en soit, la position des installations de cuisson ne nous aide pas à trancher pour une hypothèse ou l’autre: si le foyer au sol est situé sur l’axe central de la travée d’habitation, le potager se trouve quant à lui placé contre le mur-pignon intermédiaire, c’est-à-dire sur l’axe de la ligne faîtière du bâtiment. Comme on l’a vu plus haut, l’évacuation des fumées pouvant se faire de multiples façons, ces éléments ne sont malheureusement pas déterminants.

Hypothèses métrologiques

Il est toujours difficile de déceler un tracé régulateur précis sur des édifices civils et ruraux, à plus forte raison pour cette période, marquée par la diversité des constructions et peu soucieuse de respecter une norme à la romaine. Cependant, l’analyse métrologique comparée des trois bâtiments à architecture en pierre de Delle, de Salins et de Pratz semble révéler certaines constantes: l’utilisation d’un pied proche de 32 cm, servant de base à un système modulaire de 12 pieds (ou 6) et 15 pieds, paraît une hypothèse envisageable (fig. 55). C’est ce qui est d’ailleurs proposé au musée de Marle pour la restitution du hameau de l’annexe au Gué de Mauchamp (milieu du VIe siècle de notre ère) à Juvincourt-et-Damary (Aisne), où les bâtiments sont construits selon un module rectangulaire de 12 pieds sur 15 (Bayard, Nice 2005).

5. Dans la région, on nomme taillaillon une mince plaque en bois faisant office de tuile.
Le bâtiment de Delle est construit sur un double carré de 60 pieds sur 30 pieds, subdivisé en cinq modules de 12 pieds de longueur (ou dix modules de 6) pour deux modules de 15 pieds de largeur (ou cinq modules de 6). Le bâtiment de Salins s’inscrit quant à lui dans un rectangle de 30 pieds sur 36 pieds, ce qui, dans le cadre d’un module de 6 pieds, donne une proportion de 5 pour 6. Enfin, le bâtiment de Pratz est dessiné selon un tracé de 48 pieds sur 42, soit une proportion de 7 pour 8 (fig. 55).

À quoi correspond ce pied de 32 cm?
On sait que, depuis l’Antiquité, la principale unité de mesure employée est le pied romain ou *pes monetalis*, de 29,6 cm, unité dont l’usage perdurera jusqu’au Moyen Âge, comme cela est encore attesté pour la construction de l’abbatiale de Cluny III aux xi-xiiᵉ siècles. Cependant, plusieurs autres valeurs de pieds sont présentes entre la fin de l’Antiquité et le début du Moyen Âge : il semble par exemple que le pied carolingien de 33,3 cm, héritier de l’antique *pes drusianus* de 33,2 cm, régisse le projet du palais d’Aix-la-Chapelle de la fin du viiiᵉ siècle de notre ère (Erlande-Brandeburg 1999, p. 103). Par ailleurs, plusieurs unités de pieds peuvent être mises en évidence dans l’histoire architecturale d’un même édifice : ainsi, l’utilisation d’un pied romain de 29,7 cm, d’un pied carolingien de 35,3 cm et d’un pied royal de 32,5 cm est avérée dans l’analyse métrologique des cryptes successives de Saint-Germain d’Auxerre, élevées à partir du milieu du ixᵉ siècle de notre ère.

En tout état de cause, la valeur officielle du pied n’est pas forcément celle qui est employée dans les édifices civils ruraux : on sait que, pour la période romaine, plusieurs pieds portatifs, souvent pliants, retrouvés en fouilles, donnent des écarts de mesures importants, à l’exemple du pied romain portatif de Criquebœuf (Eure) dont la valeur de 32,2 cm est assez proche de celle envisagée ici. On peut donc supposer que le plan des trois bâtiments francs-comtois a été déterminé sur la base d’un pied « local » de 32 cm (Grenier 1958, p. 38).
Chapitre 3

Le mobilier

D. Billoin

L’établissement mérovingien de Pratz a livré un mobilier relativement important et diversifié qui constitue, à ce jour, le premier lot d’objets domestiques de cette période en Franche-Comté. L’abondance de mobilier inscrit dans une durée d’occupation relativement courte offre donc l’opportunité de fournir un référentiel typochronologique. Les études comparatives avec d’autres sites d’habitat restent délicates, en raison de leur éloignement et de faciès culturels ou d’approvisionnements différents. Une étude détaillée de chaque catégorie de mobilier a donc été engagée afin qu’aucun critère, tant morphologique que technique, ne soit négligé ou sous-estimé. En dehors des rares accessoires vestimentaires découverts, qui trouvent des parallèles avec le mobilier funéraire de l’aire romano-burgonde, les objets du quotidien n’apportent que peu de renseignements chronologiques, en raison de l’absence de certaines catégories d’entre eux – les monnaies par exemple –, ou de la longévité d’autres comme l’outillage, naturellement adapté à remplir une fonction utilitaire et peu enclin à suivre des évolutions typochronologiques. Ces arguments nous ont logiquement conduits à étayer la chronologie par des datations physiques, afin de cerner cette occupation dans le temps et de consolider les orientations offertes par ce mobilier.

L’étude des artefacts contribue également à appréhender les activités quotidiennes et artisanales de cet établissement. Qu’il s’agisse des déchets métallurgiques, de la scorie ou du fragment métallique informe ou de la pièce la plus caractéristique, chaque élément a en effet été sollicité afin de tenter de répondre à ces questions. Les échanges et la circulation des produits nécessitaient que l’on interroge également les diverses matières premières utilisées, pour déterminer leur nature exacte et, par conséquent, leur provenance géographique. L’étude de la faune correspond aux restes de nourriture de cette communauté et reflète le cheptel élevé sur l’établissement ou à proximité, de même que les macrorestes végétaux sont tout aussi primordiaux puisqu’ils constituent l’une des raisons d’être de cette communauté rurale – ouvrant des fenêtres sur l’exploitation du milieu naturel environnant. La dimension spatiale du mobilier a été intégrée à la réflexion, car elle fournit des renseignements sur l’occupation de l’espace, et, par corrélation avec l’analyse architecturale, permet de mieux interpréter la fonction des structures, à l’intérieur comme à l’extérieur des édifices. Ce mobilier, pris dans son acceptation la plus large, est également sollicité par croisement des données afin de répondre à la délicate question du statut social des occupants.
La répartition spatiale du mobilier

Liée aux diverses activités quotidiennes, la répartition spatiale du mobilier et des déchets, notamment métallurgiques, est également soumise aux processus d'érosion du site. La pente où se trouvent ces édifices et la faible épaisseur de sédiment qui recouvre la dalle rocheuse ont en effet nettement favorisé une migration vers les points bas du site, mouvement accentué par une mise en culture contemporaine, et postérieure à l’occupation, d’une partie de ce plateau. Par ailleurs, des facteurs environnementaux, comme les précipitations météorologiques importantes dans cette région de montagne, accélèrent encore davantage ce processus érosif. Les structures construites et les anomalies du sous-sol ont donc constitué des pièges sédimentaires où le mobilier s’est accumulé. Cette érosion est nettement plus marquée sur la partie résidentielle dont la position topographique, en limite de rupture d’une pente, a accéléré le processus. L’épaisseur stratigraphique est donc très limitée par comparaison avec le secteur du bâtiment artisanal, et par conséquent, les témoins matériels se révèlent moins nombreux. En règle générale, les niveaux d’occupation en contact direct avec la roche sont lacunaires et conservés seulement près des murs des édifices ou piégés dans des anfractuosités de la roche.

La nature du sous-sol, un calcaire dur tabulaire du Bajocien, a limité considérablement les creusements, si bien qu’aucune structure en creux (fosse ou silos) n’a été mise en place. L’évacuation des déchets s’est réalisée par épandage sur les pentes et ces témoins ne sont donc qu’exceptionnellement conservés. La densité de mobilier est en grande partie corrélée à la conservation différentielle des différentes unités stratigraphiques. Il en résulte que l’analyse spatiale n’est que partiellement en adéquation avec les activités exercées. Une carte de répartition de tous les objets matériels, cotés en trois dimensions lors de la fouille, offre une lecture visuelle des distorsions causées par l’érosion de pente, mais permet aussi de relever des concentrations d’origine anthropique (fig. I et 56).

Comme la construction, la gestion des déchets a mis à profit la topographie et les contraintes géologiques du site. La déclivité naturelle a ainsi été utilisée pour l’évacuation des déchets à l’aval du bâtiment artisanal, secteur où l’accumulation de dépôt a été préservée contre le long mur qui délimite une parcelle, jouant également le rôle de barrière sédimentaire (fig. I). Ce comportement de rejet adopté par les habitants et d’acheminement des rebuts à proximité de structures de délimitation – fossés, enclos ou palissades – a été observé dans les fermes du haut Moyen Âge de Develier-Courtételle, sur le versant suisse du Jura (Fellner 2008, p. 79). Ce dépotoir, nécessité par l’entretien de l’espace de travail du bâtiment artisanal, est d’ailleurs situé à proximité de la porte de l’atelier, précisément là où l’on enregistre la plus forte concentration de mobilier en fer, illustrant bien les déplacements fréquents de l’intérieur du bâtiment artisanal à cette zone de dépôt. Quelques objets en fer sont disséminés au-delà du mur de délimitation – dont un fragment de fer à cheval –, constituant des indices en faveur d’un ancien niveau de circulation bordant ce mur (fig. I). En revanche, l’appentis où se situent les foyers de travail reste particulièrement dépourvu en témoinage mobilier, sans doute l’effet des processus érosifs évoqués plus haut. La pièce principale, équipée d’un foyer central et d’un potager, est celle qui possède le plus grand nombre d’objets avec la pièce flanquée à l’angle de l’édifice, interprétée comme un petit atelier (fig. 56, pièces A et E). Les abords immédiats de ces deux espaces en sont encore bien pourvus, alors que les autres pièces n’en livrent que très peu, les récipients en terre cuite ou en pierre ollaire étant
absents. Cette distribution spatiale renvoie aux activités pratiquées dans ces lieux et à leur fonction, particulièrement en ce qui concerne la céramique et l'outillage. L'établissement sensiblement contemporain de Delle la Queue au Loup, dans le Territoire de Belfort, offre une comparaison pertinente, illustrant également la part plus importante du mobilier dans la pièce principale de l'édifice, en particulier autour du foyer domestique (Billoin 2010). Cette analyse spatiale, engagée sur des catégories de mobilier particulières, donne également des résultats. Ainsi, la localisation des récipients en pierre ollaire révèle que cette vaisselle est massivement associée aux foyers domestiques ou artisanaux. On la retrouve en nette concentration à proximité immédiate, sur les couches

Fig. 56: Répartition spatiale du mobilier sur le bâtiment résidentiel (DAO D. Billoin).
d’occupation ou directement à l’intérieur de foyers, quelques fragments étant éparpillés à l’intérieur du bâtiment artisanal (fig. 1). La lecture de cette association entre cette catégorie de vaisselle et des foyers est encore plus éloquente dans la partie résidentielle, puisqu’elle est concentrée dans la cuisine, et tout particulièrement le long du potager, révélant bien le rôle de ces récipients comme pots à cuire (fig. 56).

La vaisselle est pratiquement absente de l’annexe flanquée au bâtiment qui se distingue par la présence de beaucoup d’objets en fer et, étonnamment, par une forte présence de faune ne pouvant être mise en relation avec un travail de l’os puisqu’une telle activité est quasi absente sur le site (problème de conservation ?). Le matériel de mouture est, à l’exception de deux petits fragments de basalte présent sur l’atelier, réparti presque exclusivement sur l’édifice résidentiel, lui conférant un rôle domestique. Dans le détail, ces fragments de meules sont concentrés sur la pièce à vivre et sur son débouché vers l’extérieur à l’ouest, en relation avec la remise ou avec l’atelier flanqué au bâtiment. C’est vraisemblablement là que s’effectuait le traitement des céréales, comme le suggère également une meule rotative pratiquement complète. Les aiguisoirs et rares fragments de vaisselle en bronze sont également retrouvés dans cette partie habitable du site.

Bien que limitée par différents processus d’érosion naturelle, l’analyse spatiale du mobilier apporte de précieuses informations, peu accessibles autrement. Dans bien des cas, la répartition des témoins matériels conforte les approches architecturales ou comparatives portant sur la fonction des pièces des édifices retrouvés.

La vaisselle en terre

S. Humbert

Si la céramique du haut Moyen Âge est bien connue dans les contextes funéraires de Franche-Comté (Mathiaut-Legros 1999, 2000, 2006; Urlacher et al. 2009), en revanche, la connaissance du mobilier de l’habitat était assez pauvre jusqu’à la découverte de l’établissement de Pratz, qui a livré un total de 1722 tessons représentant 143 formes. En effet, très peu de sites de cette période ont fait l’objet de fouilles et de publications ; à ce jour, on recense moins de 300 vases en contexte d’habitat : 4 céramiques pour un fond de cabane à Mandeure dans le Doubs (Petrequin, Odouze 1967) ; dans le Jura, 55 récipients dans une fosse à Chavéri (Humbert et al. 1995, p. 44), 25 individus pour un fond de cabane et des bâtiments sur poteaux à Choissey-Partey (Vaxelaire, Labeaune 1996, p. 222), 66 sur le site de hauteur de la Motte à Écrille (Gandel et al. 2008, p. 299) ; 17 récipients pour l’habitat de la Queue au Loup à Delle dans le Territoire de Belfort (Biloin et al. 2010, p. 620) et 98 formes pour l’habitat rural de Vellechevreux en Haute-Saône, daté du milieu du vii au xii siècle (Peytremann 1999, p. 335). Cet état lacunaire est moins sensible dans les régions limitrophes. Au nord, on dispose d’une synthèse pour l’Alsace (Châtelet 2002). À l’est, de la publication récente des fouilles de l’habitat rural de Develier-Courtételle (Marti et al. 2006) et des travaux sur la céramique en Suisse occidentale (Haldiman 2002). En Bourgogne, l’habitat de Genlis reste le site de référence (Catteddu 1992), auquel s’ajoutent les travaux récents consacrés aux ateliers de production du Val-de-Saône, en particulier celui de Sevrey qui est au cœur d’un des plus grands centres de production de céramiques connus pour la période mérovingienne.
(Delor-Ahü, Simonin 2006 ; Mani 2004). Enfin, au sud, la publication *Vivre à la campagne au haut Moyen Âge* dresse un bilan essentiel pour une série d’habitats en Rhône-Alpes (Faure-Boucharlat 2001).

Présentation du lot

Les céramiques du bâtiment artisanal

Pour une superficie d’environ 700 m², le bâtiment artisanal a livré un nombre total de 1 471 fragments parmi lesquels on dénombre 137 individus minimum (le nombre minimum d’individus – NMI – est calculé, après recollage, à partir du nombre de bords, pondéré par tout élément caractéristique d’une forme ne figurant pas au nombre des bords). Parmi ceux-ci, 42 fragments se rapportent à la période gallo-romaine et sont résiduels, et 27 fragments sont de période indéterminée. Enfin, 14 tessons de vaisselle du xi° siècle témoignent d’une réoccupation sporadique du site. Les 1 388 fragments restants, parmi lesquels on dénombre 115 récipients, concernent le haut Moyen Âge (tabl. 1). Une seule phase d’occupation a été discernée lors de la fouille ; les céramiques sont issues

Tabl. 1 : Répartition des catégories de céramiques du bâtiment artisanal (S. Humbert).

<table>
<thead>
<tr>
<th>catégorie</th>
<th>forme/type</th>
<th>nb. frag.</th>
<th>NMI</th>
</tr>
</thead>
<tbody>
<tr>
<td>céramique à pâte claire</td>
<td>bol à collerette</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>à dégraissant sableux</td>
<td>gobelet tronconique</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>pot à anse</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>pot à lèvre arrondie</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>pot à lèvre rectangulaire</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>pot à lèvre décorée</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>pot à gorge interne</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>indéterminé</td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>total</td>
<td></td>
<td>125</td>
<td>16</td>
</tr>
<tr>
<td>céramique à pâte claire fine</td>
<td>gobelet à panse biconique</td>
<td>22</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>indéterminé</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>total</td>
<td></td>
<td>23</td>
<td>2</td>
</tr>
<tr>
<td>total pâte claire</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(postcuisson oxydante)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>céramique à pâte sombre fine</td>
<td>bouteille?</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>gobelet à panse biconique</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>gobelet à bord évasé</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>indéterminé</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>total</td>
<td></td>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>céramique à pâte sombre</td>
<td>couvercle</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>à dégraissant sableux</td>
<td>cruche</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>pot à lèvre décorée</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>pot à lèvre en bandeau</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>indéterminé</td>
<td>66</td>
<td>0</td>
</tr>
<tr>
<td>total</td>
<td></td>
<td>73</td>
<td>7</td>
</tr>
<tr>
<td>total pâte sombre</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(postcuisson réductrice)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>total haut Moyen Âge</td>
<td></td>
<td>232</td>
<td>28</td>
</tr>
<tr>
<td>céramique à glaçure moderne</td>
<td>indéterminé</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Céramique gallo-romaine résiduelle</td>
<td>indéterminé</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Total général</td>
<td></td>
<td>251</td>
<td>28</td>
</tr>
</tbody>
</table>
Tabl. 2 : Répartition spatiale des céramiques du bâtiment artisanal (S. Humbert).

<table>
<thead>
<tr>
<th>pièce</th>
<th>nb. frag.</th>
<th>formes</th>
</tr>
</thead>
<tbody>
<tr>
<td>A: occupation (Us. 124)</td>
<td>80</td>
<td>1 couvercle, 5 pots à cuire</td>
</tr>
<tr>
<td>B: occupation (Us. 109) et comblement du puits (Us. 114)</td>
<td>90</td>
<td>1 bouteille, 1 pot à anse, 5 gobelets, 3 pots à cuire</td>
</tr>
<tr>
<td>C: occupation</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D: occupation</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>E: occupation (Us. 122)</td>
<td>23</td>
<td>1 gobelet, 4 pots à cuire</td>
</tr>
<tr>
<td>extérieur : occupation (Us. 103, 105, 120, 126)</td>
<td>7</td>
<td>1 pot à cuire</td>
</tr>
<tr>
<td>surface : prospection (Us. 100)</td>
<td>32</td>
<td>1 bol à colerette, 1 cruche, 4 pots à cuire</td>
</tr>
<tr>
<td>total général</td>
<td>232</td>
<td>28</td>
</tr>
</tbody>
</table>

Tabl. 3 : Répartition des catégories de céramiques du bâtiment résidentiel (S. Humbert).

<table>
<thead>
<tr>
<th>catégorie</th>
<th>forme/type</th>
<th>nb. frag.</th>
<th>NMI</th>
</tr>
</thead>
<tbody>
<tr>
<td>céramique à pâte claire à dégraissant sableux</td>
<td>bol à paroi oblique</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>bol caréné</td>
<td>7</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>bol à bord rentrant</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>bol à colerette</td>
<td>22</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>gobelet</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>cruche à bec pincé</td>
<td>5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>cruche indéterminée</td>
<td>8</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>pot à lèvre déversée</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>pot à lèvre en amande</td>
<td>14</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>pot à lèvre arrondie</td>
<td>15</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>pot à lèvre rectangulaire</td>
<td>12</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>pot à lèvre triangulaire</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>pot à lèvre décorée</td>
<td>57</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>indéterminé</td>
<td>992</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>total</td>
<td>1144</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>céramique à pâte claire fine</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>cruche</td>
<td>5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>indéterminé</td>
<td>7</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>total</td>
<td>1151</td>
<td>102</td>
<td></td>
</tr>
<tr>
<td>total pâte claire (postcuisson oxydante)</td>
<td>1144</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>céramique à pâte sombre fine</td>
<td>gobelet à panse biconique</td>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td>indéterminé</td>
<td>42</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>total</td>
<td>54</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>céramique à pâte sombre à dégraissant sableux</td>
<td>pot à lèvre en bandeau</td>
<td>11</td>
<td>8</td>
</tr>
<tr>
<td>indéterminé</td>
<td>164</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>total</td>
<td>175</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>non tournée</td>
<td>indéterminé</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>total pâte sombre (postcuisson réductrice)</td>
<td>237</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>total haut Moyen Âge</td>
<td>1388</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td>céramique de période indéterminée</td>
<td>indéterminé</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>céramique du XIe s.</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>céramique gallo-romaine résiduelle</td>
<td>indéterminé</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>total général</td>
<td>1471</td>
<td>115</td>
<td></td>
</tr>
</tbody>
</table>
des couches d’occupation, de démolition et d’abandon du bâtiment. Les col-
lages entre des fragments provenant de diverses structures et unités stratigra-
phiques confortent cette approche. Les vases sont très fragmentés et dispersés,
et la reconstitution systématique n’a pas donné de forme complète. En revanche,
la répartition spatiale fait ressortir trois zones inégales de concentration des ves-
tiges, liées aux différentes attributions des espaces: une zone d’activité autour
des foyers, l’intérieur du bâtiment et une zone de rejet à l’extérieur du bâtiment
(tabl. 2).

Les céramiques du bâtiment résidentiel
Pour une superficie d’environ 1 000 m², la fouille du bâtiment résidentiel a
livré un total de 251 tessons parmi lesquels on compte 7 fragments d’époque moderne, 12 fragments de céramique gallo-romaine et 232 tessons de céra-
miques du haut Moyen Âge comprenant 28 formes identifiées. La plupart des
formes sont très fragmentaires, seuls deux gobelets archéologiquement complets
ont été reconstitués (tabl. 3). Une seule phase d’occupation a été discernée au
cours de la fouille. Les céramiques proviennent essentiellement des couches
d’occupation et du comblement du puits. Elles sont concentrées dans la partie
est du bâtiment: à l’intérieur des pièces à vivre A et B, autour du puits et dans
l’annexe avec foyer E, les pièces C et D étant vides (tabl. 4).

Les céramiques du haut Moyen Âge

Aspects techniques et morphologiques
Les nuances de composition des lots des deux bâtiments n’offrant aucune
indication susceptible de distinguer des phases chronologiques, l’étude de la
céramique a été réalisée sur l’ensemble du mobilier du haut Moyen Âge. Il
compte 1 620 fragments de céramiques, parmi lesquels on dénombre 143 réci-
pients (tabl. 5).
Hormis huit fragments appartenant à un récipient de type indéterminé en
poterie modelée (fig. 57, n° 11), les céramiques sont tournées. Il est difficile
de discerner des regroupements sûrs au simple examen à l’œil nu des pâtes; il
est plus prudent de distinguer les grandes catégories en fonction des modes de
cuisson, pâtes claires et pâtes sombres (fig. II), une analyse plus détaillée sera
effectuée dans le chapitre consacré aux analyses de pâte.

<table>
<thead>
<tr>
<th>espace</th>
<th>nb. frag.</th>
<th>formes</th>
</tr>
</thead>
<tbody>
<tr>
<td>A: appentis, foyers</td>
<td>165</td>
<td>1 cruche, 2 bols, 8 pots à cuire</td>
</tr>
<tr>
<td>(Us.21, 35, 36, 45)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B: intérieur du bâtiment</td>
<td>153</td>
<td>1 bol, 1 bol à collerette, 2 gobelets, 8 pots à cuire</td>
</tr>
<tr>
<td>(Us.5, 6, 24)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C: extérieur, zone de rejet</td>
<td>805</td>
<td>3 cruches, 3 gobelets, 6 bols, 9 bols à collerette, 48 pots à cuire, 2 indéterminés</td>
</tr>
<tr>
<td>(Us.11, 13, 14, 20, 22, 25, 31, 32)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>non localisé, décapage</td>
<td>265</td>
<td>1 gobelet, 5 cruches, 2 bols, 1 bol à collerette, 12 pots à cuire</td>
</tr>
<tr>
<td>total</td>
<td>1 388</td>
<td>115</td>
</tr>
</tbody>
</table>
Céramiques tournées à pâte sombre
Il s’agit des céramiques cuites en mode B, à postcuisson réductrice. Elles comptent 313 fragments, parmi lesquels on dénombre 22 récipients, et représentent 19 % du nombre de fragments et 15 % du nombre minimum de vases. Deux grands groupes peuvent être distingués en fonction de la finesse de la pâte.

Les céramiques sombres fines
Les céramiques sombres fines tournées présentent des aspects de pâte variés à surface grise ou noire et cœur gris ou beige parfois rouge-brun, ce qui indique peut-être des productions d’origines différentes ou simplement des températures de cuisson plus ou moins bien maîtrisées. La surface des vases, gris plus foncé ou noire, est lissée. Les parois sont fines (2 à 4 mm). On dénombre 65 fragments et 7 individus dans cette catégorie. Les tessons identifiés correspondent à une bouteille et des gobelets.

Tabl. 5 : Répartition des catégories de céramiques de l’établissement (S. Humbert).

<table>
<thead>
<tr>
<th>catégorie</th>
<th>forme/type</th>
<th>nb. frag.</th>
<th>NMI</th>
</tr>
</thead>
<tbody>
<tr>
<td>céramique à pâte claire</td>
<td>bol à paroi oblique</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>à dégraissant sableux</td>
<td>bol caréné</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>bol à bord rentrant</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>bol à collerette</td>
<td>24</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>gobelet</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>gobelet tronconique</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>cruche à bec pincé</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>cruche indéterminée</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>pot à anse</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>pot à lèvre déversée</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>pot à lèvre arrondie</td>
<td>18</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>pot à lèvre rectangulaire</td>
<td>16</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>pot à lèvre triangulaire</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>pot à lèvre décorée</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>pot à gorge interne</td>
<td>63</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>pot à lèvre en amande</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>indéterminé</td>
<td>1092</td>
<td>1</td>
</tr>
<tr>
<td>total</td>
<td></td>
<td>1269</td>
<td>116</td>
</tr>
<tr>
<td>céramique à pâte claire fine</td>
<td>gobelet à panse biconique</td>
<td>22</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>cruche</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>indéterminé</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>total</td>
<td></td>
<td>30</td>
<td>4</td>
</tr>
<tr>
<td>total pâte claire (postcuisson oxydante)</td>
<td></td>
<td>1299</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(80 %)</td>
<td>(84 %)</td>
</tr>
<tr>
<td>céramique à pâte sombre fine</td>
<td>bouteille?</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>gobelet à panse biconique</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>gobelet à bord évasé</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>indéterminé</td>
<td>45</td>
<td>0</td>
</tr>
<tr>
<td>total</td>
<td></td>
<td>55</td>
<td>7</td>
</tr>
<tr>
<td>céramique à pâte sombre</td>
<td>couvercle</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>à dégraissant sableux</td>
<td>cruche</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>pot à lèvre décorée</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>pot à lèvre en bandeau</td>
<td>15</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>indéterminé</td>
<td>230</td>
<td>0</td>
</tr>
<tr>
<td>total</td>
<td></td>
<td>248</td>
<td>15</td>
</tr>
<tr>
<td>total pâte sombre (postcuisson réductrice)</td>
<td></td>
<td>313</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(13 %)</td>
<td>(15 %)</td>
</tr>
<tr>
<td>non tournée</td>
<td>indéterminé</td>
<td>8 (1 %)</td>
<td>1 (1 %)</td>
</tr>
<tr>
<td>total général</td>
<td></td>
<td>1620</td>
<td>143</td>
</tr>
</tbody>
</table>
Bouteille
De cette bouteille de petite dimension à bord en entonnoir, seul le bord est conservé. Son diamètre d’ouverture est de 60 mm (fig. 58, n° 19).

Gobelet à lèvre évasée
Un seul fragment de bord représente ce type, avec un diamètre de 82 mm (fig. 58, n° 18).

Gobelet à panse biconique
Aucune forme complète n’a pu être restituée. Les fragments de bords et de panses appartiennent à environ 5 pots ou gobelets à col et carène soulignés de moulures ou de cordons qui correspondent à des gobelets ou pots tripartites à panse en deux parties et encolure haute : pots de type H (fig. 58, n° 12, 14, 15, 16 et 17) ou à des gobelets à ressauts (fig. 58, n° 13) (Mathiaut 2006, p. 206). Les diamètres d’ouverture s’échelonnent entre 90 et 130 mm.

Les céramiques sombres à dégraissant sableux
Les céramiques de cette catégorie présentent une pâte de couleur brune ou noire à dégraissant sableux légèrement micacé. La surface des vases est noire, sommairement lissée. L’épaisseur des parois varie de 4 à 12 mm. On dénombre 248 fragments et 15 individus dans cette catégorie. Le répertoire comporte 12 pots, 1 cruche et 1 couvercle.

Pots à lèvre en bandeau peu marqué
Ce type est représenté par 2 exemplaires : 1 récipient de petite taille avec un diamètre d’ouverture de 80 mm (fig. 59, n° 23), et 1 pot à lèvre décorée à la molette de carrés juxtaposés (fig. 59, n° 22).

Pots à lèvre en bandeau vertical
Ce type est caractérisé par une lèvre en bandeau vertical légèremment incurvé. Ces récipients à fond plat semblent former un groupe homogène par l’aspect mais aussi par la taille, les diamètres d’ouverture se situant entre 130 et 160 mm (fig. 59, n° 24 à 34).

Fig. 57 : Planches céramiques (S. Humbert).
Cruche
Cette forme, à pâte grise et dégraissant sableux, possède une anse aplatie attachée à la lèvre dont la gorge interne est peu marquée (fig. 58, n° 20).

Couvercle
En pâte brune de facture assez grossière, cette forme à paroi oblique est munie d’un bord épaissi (fig. 59, n° 21).

Céramiques tournées à pâte claire
Il s’agit des céramiques cuites en mode A, à postcuisson oxydante. On dénombre 1 298 fragments et 119 individus dans cette catégorie qui représente 80% du nombre de fragments et 84% du nombre minimum de vases. Deux grands groupes peuvent être distingués en fonction de la finesse de la pâte.

Les céramiques claires à pâte fine
Les céramiques claires à pâte fine comptent 30 fragments et 4 individus à pâte beige orangé à cœur gris ou beige-brun et fin dégraissant. Les seules formes identifiées sont 1 fragment de petite cruche et 1 gobelet. Cette catégorie ne se distingue de la suivante que par la finesse du dégraissant.

Cruche
Seule la partie inférieure de ce vase de petite taille est conservée (hauteur 70 mm). Le fond est plat, le haut de la panse globulaire porte un décor imprimé à la molette de deux registres horizontaux de trois et quatre lignes de petits rectangles juxtaposés (fig. 61, n° 59).

Gobelet à panse biconique
Pour ce gobelet à col haut de type H1 (Mathiaut 1999, p. 29), le diamètre le plus large est presque égal à la hauteur (diamètre à l’ouverture: 96 mm, hauteur: 95 mm). Le col est légèrement évasé, la panse arrondie, la carène adoucie, le fond est plat détaché à la ficelle, le décor est constitué de deux rainures dans la partie haute et d’une baguette en relief à la jonction avec la partie basse (fig. 61, n° 56).

Les céramiques claires à dégraissant sableux, dites bistre
Les céramiques claires à dégraissant sableux comptent 1 269 fragments pour 116 individus. La texture des pâtes est plus ou moins fine selon les vases, l’épaisseur des parois varie de 4 à 9 mm, le dégraissant est sableux avec parfois quelques
inclusions plus grosses, la surface sommairement lissée est légèrement rugueuse. Les fonds plats aux contours irréguliers portent des traces de détachement à la ficelle. La couleur des pâtes varie du beige à l’orangé et au brun. Les surfaces, en général plus foncées et partiellement noircies, présentent de larges taches sombres dues à des coups de feu; cet aspect est appelé bistre en région Rhône-Alpes (Faure-Boucharlat 2001). Il est parfois difficile de distinguer les fragments très noircis de cette catégorie de celle des pâtes sombres. Cette céramique claire, la plus abondante, présente le répertoire le plus varié qui comprend: 1 bol à paroi oblique, des bols à collerette ou mortiers, des bols carénés, des gobelets, des cruches à bec pincé, 1 pot à anse et de nombreux pots à cuire. La typologie récemment établie des productions de l’atelier des Tupiniers à Sevrey (Delor-Ahu, Simonin 2006) sert désormais de base de référence pour la céramique bistre. Elle sera mentionnée dans la description de chaque type correspondant.

Bol à collerette
Le répertoire des formes ouvertes est dominé par les bols à collerette qui totalisent 12 exemplaires (fig. 60, n° 35 à 44). Le bord est plus ou moins rentrant, la collerette peu débordante, plutôt trapue, parfois à peine marquée (fig. 60, n° 35 et 36). Les diamètres à l’ouverture varient de 150 à 190 mm. Cette forme correspond au type MOR1 de Sevrey. Ce récipient à surface interne lisse, sans grain de quartz, qui porte parfois un déversoir, est un héritage du mortier gallo-romain. 3 exemplaires sont décorés d’impressions à la molette à motifs de chevrons ou losanges en résille (fig. 60, n° 35, 36 et 44).

Fig. 59: Planches céramiques (S. Humbert).
Fig. 60: Planches céramiques (S. Humbert).
Chap. 3 – Le mobilier

81

Bol à paroi oblique
Cette forme est représentée par 2 exemplaires, la partie supérieure porte un décor de lignes horizontales incisées (fig. 60, n° 45). Le diamètre à l’ouverture mesure 140 mm.

Bol à profil caréné
Les bols carénés reprennent les formes de l’Antiquité tardive. On distingue deux types à bord vertical ou évasé. Le bol caréné à bord évasé compte 2 exemplaires. Le récipient possède une lèvre déversée, et la carène adoucie est soulignée de moulures. Le décor imprimé à la molette est formé de lignes de chevrons tête-bêche qui couvrent toute la surface du vase (fig. 60, n° 46). Le diamètre à l’ouverture mesure 190 mm. Cette forme correspond au type BC3 de Sevrey. Le bol caréné à bord vertical compte 5 exemplaires. Ce type est muni d’une lèvre en bourrelet arrondi, le bandeau vertical est orné de rainures (fig. 60, n° 47 à 49). Les diamètres à l’ouverture varient de 147 à 174 mm. Cette forme correspond au type BC2 de Sevrey.

Écuelles ou bols à bord légèrement rentrant
Le bol à bord rentrant compte 2 exemplaires. La partie supérieure du récipient est presque verticale, le bord légèrement rentrant à lèvre arrondie. Le décor est constitué de rainures (fig. 60, n° 50) ou de lignes de chevrons tête-bêche (fig. 60, n° 51). Les diamètres à l’ouverture varient de 126 à 140 mm.

Gobelets tronconiques
3 gobelets correspondant au type GT1 de Sevrey ont été répertoriés. De petites dimensions, les diamètres à l’ouverture varient de 70 à 80 mm. 2 exemplaires possèdent une paroi rectiligne, à lèvre peu marquée et légèrement biseautée ; le décor à la molette de carrés juxtaposés est imprimé en spirale (fig. 61, n° 53 et 54). Le troisième exemplaire possède une paroi légèrement arrondie, un fond à contour irrégulier, ainsi qu’un décor à la molette de carrés juxtaposés (fig. 61, n° 55).

Fig. 61 : Planches céramiques (S. Humbert).
Fig. 62 : Planches céramiques (S. Humbert).
Gobelet ou bol de type indéterminé
Un bord légèrement incliné vers l’intérieur est trop fragmentaire pour être attribué à un type précis (fig. 61, n° 57). La partie supérieure porte des rainures. Le diamètre à l’ouverture mesure 110 mm.

Pot à anse
Ce récipient à ouverture en forme de colletette à lèvre rabattue vers l’intérieur est muni d’une anse ruban attachée à la lèvre ; le décor, imprimé à la molette, est constitué de double ligne de rectangles juxtaposés (fig. 61, n° 60). Le diamètre à l’ouverture mesure 140 mm. Cette forme semble inconnue à Sevrey.

Cruches
8 exemplaires de cruche ont été dénombrés. Il s’agit de cruches à bec pincé, à lèvre à gorge interne, avec anse en ruban nervuré attachée à la lèvre (fig. 61, n° 58). Cette forme correspond au type CRUC1 de Sevrey.

Pots à cuire
Les pots à cuire sont les plus abondants, avec au minimum 75 exemplaires. Les fonds sont plats, à contour irrégulier (fig. 64, n° 95 à 98), les diamètres à l’ouverture s’échelonnent de 110 à 190 mm. Les panses portent des décors à la molette. Les cols sont courts. L’absence de vase complet ne permet pas de déterminer la forme des panses : ovoïde ou globulaire ; en revanche, on remarque une grande diversité dans le détail des lèvres dites de première génération. Excepté quelques lèvres éversées à extrémité arrondie type P7 à Sevrey (fig. 61, n° 55 à 58), rectangulaire (fig. 60 et 61, n° 52 à 54) ou triangulaire type P5 à Sevrey (fig. 60, n° 50, 51), les rebords à gorge interne sont les plus nombreux,
Fig. 64: *Planches céramiques (S. Humbert).*

Tabl. 6: Types de décors sur céramiques (S. Humbert)

<table>
<thead>
<tr>
<th>techniques de décors</th>
<th>types de décors</th>
<th>formes</th>
<th>Nb. frag.</th>
</tr>
</thead>
<tbody>
<tr>
<td>modelé</td>
<td>cordons</td>
<td>gobelet</td>
<td>6</td>
</tr>
<tr>
<td>incision</td>
<td>rainures</td>
<td>gobelet</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>bol</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pot</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>total</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>peigne</td>
<td>pot</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>total incision</td>
<td>32</td>
</tr>
<tr>
<td>impression à la molette</td>
<td>carrés juxtaposés</td>
<td>gobelet</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pot</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>total</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>rectangles juxtaposés</td>
<td>cruche</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pot</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td></td>
<td>total</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>chevrons en zig-zag</td>
<td>pot</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>chevrons tête-bêche</td>
<td>bol</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pot</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>total</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>chevrons tête-bêche emboîtés</td>
<td>bol</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pot</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>total</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>losanges ou triangles en résilles</td>
<td>bol</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pot</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>total</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td></td>
<td>total impression</td>
<td>166</td>
</tr>
</tbody>
</table>

total | **204**
type P3 à Sevrey (fig. 63 et 64, n° 76 à 92). Celle-ci est parfois à peine suggérée (fig. 63, n° 76) ou nettement marquée (fig. 64, n° 91). Quelques spécimens, plus marginaux, montrent des lèvres pendantes, type P1 à Sevrey (fig. 62, n° 70 à 73), en bourrelet en forme d’amande, type P10 à Sevrey (fig. 62, n° 74 et 75), ou simplement évasée (fig. 64, n° 94). La plupart des récipients portent des traces de dépôt carbonisé sur le pourtour du bord, le col et la panse.

Les décors

Sur les 1 620 tessons du haut Moyen Âge, 204 fragments portent un décor. Trois techniques de décors ont été utilisées: l’incision, l’impression et le modelage (tabl. 6).

- Les décors exécutés par modelage
 Cette technique est utilisée pour former des motifs en relief, comme les cordons horizontaux des gobelets à ressaut et des gobelets tripartites à panse biconique (fig. 58, n° 13 ou 14).

- Les décors exécutés par incision
 Ils constituent des motifs en creux, composés de sillons ou de rainures et de stries horizontales parallèles réalisées à l’aide de peigne. Les sillons et les rainures décorent des bols ou écuelles carénés (fig. 60, n° 47 ou 48). On rencontre essentiellement le décor au peigne sur des fragments de panse de pots à cuire.

Fig. 65 : Planche de décors (S. Humbert, cliché P. Haut).
Fig. 66 : Planche de décors (S. Humbert, cliché P. Haut).

Fig. 67 : Proportion des formes de céramiques du vaisselier de Pratz (en NMI) (S. Humbert).
Les décors exécutés par impression à la molette
Cette technique utilise un outil cylindrique roulé sur la pâte molle. Les décors, en creux, sont composés de motifs géométriques simples ou complexes, développés sur une ou plusieurs lignes, ils présentent de nombreuses variantes
– carrés juxtaposés (fig. 65, n° 2);
– rectangles verticaux ou horizontaux juxtaposés sur une ou plusieurs lignes (fig. 65, n° 1 et 3);
– chevrons grossiers en zigzag (fig. 65, n° 4);
– chevrons tête-bêche (fig. 65, n° 5);
– chevrons emboîtés tête-bêche (fig. 65, n° 6);
– losanges et triangles en résille (fig. 66, n° 7, 8, 9);
– croix de Saint-André divisée par une ligne horizontale, alternée de lignes doubles de quadrilatères (fig. 66, n° 10, 11 et 12).
Statistiquement, les formes les plus fréquemment décorées sont les pots à cuire : sur 204 fragments décorés, 181 appartiennent à des récipients fermés (cruches ou pots). Les motifs le plus souvent utilisés sont les petits carrés ou rectangles sur une double ligne ou sur une ligne unique (82 et 15 tessons). Les lignes de losanges ou triangles sont bien représentées (37 tessons). À ceci s’ajoutent quelques décors en chevrons, moins nombreux, avec 20 tessons. On trouve peu de croix de saint André (10 tessons) et de chevrons grossiers (2 tessons).

Fonction des récipients : un vaisselier dominé par le pot à cuire
Les 143 individus minimum dénombrés révèlent une typologie variée, les sept formes principales identifiées (couvercle, bol, pot, gobelet, bouteille, pot à anse, cruche) se répartissant entre vaisselle de table et de cuisine (tabl. 7, fig. 68 et 69). Moins nombreuses que les formes fermées, les formes ouvertes comptent 36 individus (25 %) et sont pour la plupart réalisées en pâte claire, sauf 6 gobelets en pâte sombre fine. Les formes fermées comptent 107 individus (75 %), et sont généralement réalisées en pâte claire (90 individus contre 16 en pâte sombre) (fig. 70 et 71).
Le répertoire est dominé par les pots à cuire qui comptent 90 individus et représentent 64 % du vaisselier. La batterie de cuisine est constituée de récipients utilisés en cuisine pour la préparation des repas, la conservation des aliments et leur transformation. Les récipients culinaires recensés sont majoritairement des pots à cuire à panse ovoïde ou globulaire de taille variable (entre 110 et 190 mm de diamètre à l’ouverture). Ils sont parfois ornés de motifs par impressions à la molette. Les lèvres peuvent présenter une gorge interne profilée pour recevoir un couvercle. Ces pots servaient à cuire les bouillies de céréales, de légumineuses ou de viandes : les traces de feu et de dépôts carbonisés observés sur la panse et le pourtour du bord de ces *ollaes* l’attestent. Certains vases sont multifonctionnels, les pots à cuire pouvant également servir à la conservation et au stockage.
Le bol à collerette, qui fait office de mortier, est une forme héritée du vaisselier gallo-romain. Habituellement, les mortiers servent aux préparations culinaires : leur fonction consiste à broyer les ingrédients. Le bol à collerette montre une surface interne lisse, sans grain de quartz ;

<table>
<thead>
<tr>
<th>fonction</th>
<th>forme</th>
<th>NMI</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>cuisson et stockage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>total</td>
<td>couvercle</td>
<td>1</td>
<td>1%</td>
</tr>
<tr>
<td></td>
<td>pot</td>
<td>90</td>
<td>63%</td>
</tr>
<tr>
<td></td>
<td>total</td>
<td>91</td>
<td>64%</td>
</tr>
<tr>
<td>vaisselle de table</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>service des liquides</td>
<td>bouteille</td>
<td>1</td>
<td>1%</td>
</tr>
<tr>
<td></td>
<td>pot à anse</td>
<td>1</td>
<td>1%</td>
</tr>
<tr>
<td></td>
<td>cruche</td>
<td>10</td>
<td>7%</td>
</tr>
<tr>
<td>boisson</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>préparation et consommation</td>
<td>gobelet</td>
<td>12</td>
<td>8,5%</td>
</tr>
<tr>
<td>consommation</td>
<td>bols à collerette</td>
<td>12</td>
<td>8,5%</td>
</tr>
<tr>
<td></td>
<td>bols</td>
<td>10</td>
<td>7%</td>
</tr>
<tr>
<td>total</td>
<td></td>
<td>46</td>
<td>32,5%</td>
</tr>
<tr>
<td>indéterminé</td>
<td></td>
<td>6</td>
<td>3,5%</td>
</tr>
<tr>
<td>total</td>
<td></td>
<td>143</td>
<td>100%</td>
</tr>
</tbody>
</table>
il porte parfois un déversoir, mais à peine marqué et de dimensions modestes : entre 150 et 190 mm de diamètre. Il semble peu adapté à la fonction de mortier. Parmi les 12 récipients recensés (8,5 %), quelques exemplaires présentent des traces de feu sur le pourtour de la collerette qui pourraient suggérer une utilisation en couvercle.

La vaisselle de table est généralement constituée de vaisselle fine, utilisée pour la présentation des mets sur la table, le service des convives et la consommation individuelle ou collective. Les bols et les écuelles sont dévolus à la consommation des aliments ; leur taille est plutôt petite : sur 10 individus (7 %), aucun diamètre ne dépasse 190 mm. Des exemplaires présentent des traces de passage au feu, ce qui suppose un usage polyvalent pour ces récipients. La vaisselle de table compte également 10 gobelets de petites dimensions, 7 cruches et 1 pot à anse. Les gobelets (8,5 %) et les cruches (8,5 %) sont adaptés à la consommation de boissons et destinés au service des liquides. Les gobelets à panse biconique sont souvent considérés comme une spécificité des contextes funéraires où ils sont extrêmement fréquents. Leur présence ici, en contexte d’habitat, montre que ce n’est sans doute pas leur destination première. Leur nombre à Pratz reste toutefois limité à 4 % du total des vases. Ce vaisselier est caractérisé par l’absence totale d’assiettes et de plats pour lesquels il faut envisager le recours à la vaisselle de bois et, dans une moindre mesure, de métal. L’absence de plats ou d’assiettes est d’ailleurs une constante sur la plupart des sites de cette époque. Si la vaisselle céramique est nettement majoritaire sur le site, elle n’a toutefois pas l’exclusivité du vaisselier qu’elle partage avec d’autres récipients en pierre ollaire et en verre (voir les chapitres consacrés à ces mobiliers). Le répertoire des formes est dominé par le service associant cruche, pot à cuire, gobelet et bol (fig. 67).
La répartition spatiale des céramiques
Il est difficile d’analyser la répartition spatiale du mobilier, car la plupart des céramiques sont issues de zones de rejet. Le bâtiment artisanal a livré quatre fois plus de tessons que le bâtiment résidentiel (115 et 27 NMI), mais cette variation est probablement due à un problème de conservation différentielle.
Les pots à cuire sont majoritaires dans les deux bâtiments (68 % et 63 %) et dominent dans tous les espaces. Les récipients à boire ou à servir les liquides sont proportionnellement plus nombreux dans le bâtiment résidentiel où ils représentent 19 % pour les gobelets et 11 % pour les cruches, contre 6 % et 8 % pour le bâtiment artisanal. Hormis un seul bol à colerette, on remarque la quasi-absence de bols et d’écuelles dans le bâtiment résidentiel, alors que les formes ouvertes représentent 18 % des récipients dans le bâtiment artisanal. Il serait assez hasardeux de tirer des conclusions à partir de ces chiffres : pour une analyse fiable, il faudrait que le nombre de vases des deux lots soit sensiblement équivalent. Des récipients culinaires et de la vaisselle de table ont été utilisés dans les deux bâtiments, les seules indications pertinentes concernent la répartition des céramiques à l’intérieur de chaque bâtiment. Alors que tous les espaces du bâtiment artisanal ont livré des récipients, deux pièces du bâtiment résidentiel sont totalement vides, elles ont sans doute servi d’étable et de grange.

Caractéristiques, comparaisons, chronologie
Le service bistre constitue la part la plus importante du vaisselier de Pratz. La céramique bistre est produite dans le Val-de-Saône, et plusieurs ateliers ont été découverts dans la région de Chalon-sur-Saône. Le centre de Sevrey (Saône-et-Loire), connu depuis longtemps (Renimel 1974), a fait l’objet de fouilles récentes qui ont permis la mise en évidence du service bistre composé de pots à cuire, cruches, bols carénés et bols à colerette. Ces récipients sont produits du milieu VIIe siècle au milieu du VIIIe siècle dans l’atelier de Sevrey les Tupiniers (Delor-Ahû,
L’établissement de Pratz le Curtillet

Simonin 2006, p. 291). Toutefois, Sevrey n’est pas le seul centre de production ; les découvertes récentes font apparaître de nombreux lieux de production dans le Val-de-Saône autour de la forêt de la Ferté, près de Chalon-sur-Saône. Si ce secteur reste le plus important centre de production, les analyses chimiques ont montré qu’il faut également envisager l’existence d’ateliers dans d’autres régions (Mani 2004, p. 215). Le recours aux analyses pour l’identification des fabriques représentées sur le site s’imposait donc. Il en résulte que l’origine probable du plus grand nombre de céramiques bistre de Pratz se situe dans la zone de la forêt de la Ferté (cf. chapitre consacré aux analyses de pâte), ce qui confirme l’importance du Val-de-Saône. La diffusion massive de ces céramiques couvre un vaste territoire qui s’étend de la Bourgogne à la Franche-Comté, la Suisse occidentale et la région Rhône-Alpes, et leur exportation jusqu’au littoral méditerranéen est désormais bien établie (Bonifay, Raynaud 2007, p. 109). Approvisionner

Tabl. 8 : Formes du service bistre dans les habitats du haut Moyen Âge en Franche-Comté (fouilles et diagnostics) (S. Humbert).

<table>
<thead>
<tr>
<th>sites</th>
<th>type d’occupation</th>
<th>datation</th>
<th>bol à collerette</th>
<th>bol</th>
<th>cruche</th>
<th>pot à cuire</th>
<th>total site</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chavéria (39)</td>
<td>indéterminé fosse</td>
<td>VII⁺/VII⁺ s.</td>
<td>2</td>
<td>10</td>
<td>5</td>
<td>29</td>
<td>46</td>
</tr>
<tr>
<td>Choisey (39)</td>
<td>habitat rural sur poteaux</td>
<td>VII⁺/XI⁺ s.</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>Écrille (39)</td>
<td>site de hauteur</td>
<td>VII⁺/VI⁺ s.</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>Écrille (39)</td>
<td>site de hauteur</td>
<td>VII⁺/VII⁺ s.</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>L’Étoile (39)</td>
<td>habitat rural</td>
<td>VII⁺ s.</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>Grozon (39)</td>
<td>indéterminé</td>
<td>milieu VII⁺/VII⁺ s.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Méntru (39)</td>
<td>site de hauteur</td>
<td>VII⁺/VI⁺ s.</td>
<td>3</td>
<td>10</td>
<td>0</td>
<td>29</td>
<td>42</td>
</tr>
<tr>
<td>Pratz (39)</td>
<td>établissement en pierre</td>
<td>milieu VII⁺ s.</td>
<td>12</td>
<td>6</td>
<td>10</td>
<td>78</td>
<td>106</td>
</tr>
<tr>
<td>Tavaux (39)</td>
<td>habitat rural sur poteaux</td>
<td>VII⁺/VI⁺ s.</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>Besançon (25)</td>
<td>habitat urbain</td>
<td>VII⁺/VII⁺ s.</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>Burgille (25)</td>
<td>villa abandon</td>
<td>VII⁺ s.</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Courchapon (25)</td>
<td>habitat rural sur poteaux</td>
<td>fin VII⁺/XII⁺ s.</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Mandeure (25)</td>
<td>fond de cabane</td>
<td>VII⁺ s.</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Pontarlier (25)</td>
<td>habitat rural nécropole</td>
<td>VII⁺/VII⁺ s.</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Bessoncourt (90)</td>
<td>habitat rural sur poteaux</td>
<td>VII⁺/VII⁺ s.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Bourgogne (90)</td>
<td>habitat</td>
<td>VII⁺/XII⁺ s.</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Delle (90)</td>
<td>établissement en pierre</td>
<td>1ère moitié du VII⁺ s.</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>Sornay (70)</td>
<td>indéterminé mère</td>
<td>VII⁺ s.</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Vellechevreux (70)</td>
<td>habitat rural et sépultures</td>
<td>milieu VII⁺/XI⁺ s.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>Total formes</td>
<td></td>
<td></td>
<td>19</td>
<td>38</td>
<td>25</td>
<td>228</td>
<td>310</td>
</tr>
</tbody>
</table>
un tel marché nécessite sans doute un grand centre de production constitué de nombreux ateliers.

En Franche-Comté, le service bistre est présent dans tous les contextes d’habitat connus pour cette période (tabl.8); dans le Jura: sur l’établissement rural de Tavaux Pré Monseigneur (Humbert 2012), sur les sites de hauteur de Ménetru-le-Vignoble (Gandel, Billoin 2011) et d’Écrille (Gandel \textit{et al.} 2008, p. 304), dans une fosse de Chavéria (Humbert \textit{et al.} 1995, p. 46), ainsi qu’à Choisey Parthey (Vaxelaire Labeaune 1996, p. 223). Ils sont attestés sur le domaine rural de la Queue au loup à Delle (Billoin 2010), à Bessoncourt (Humbert 2010) et à Bourougne, dans le Territoire de Belfort, qui semble être la limite septentrionale de diffusion de cette céramique qu’on ne trouve pas en Alsace. Dans le Doubs, ils figurent dans le fond de cabane de Mandeure (Pétrequin 1967, p. 178), à Besançon rue du Porteau (Munier, Humbert 2008) et dans les niveaux d’occupation tardive de la \textit{pars rustica} de la villa de Burgille (Humbert 2008).

Les céramiques bistre se rencontrent également dans les nécropoles de Franche-Comté en moindre quantité que les pots et gobelets à pâte sombre fine, formes préférées pour les dépôts dans les tombes. On y recense cependant beaucoup de cruches, quelques pots et de rares formes ouvertes. Dans les dépôts funéraires de la nécropole de Saint-Vit, datée des \textit{vi}-\textit{vii}e siècles, les bols, les cruches et les pots à lèvre de section triangulaire ou à gorge interne représentent environ 34 \% des vases (Urlacher \textit{et al.} 2008, p. 201). Une fosse située à proximité de sépultures à Mandeure rue de la Réclière contenait un bol à collerette (Kuhnle, Humbert 2006). Pots et cruches se rencontrent à Arbouans, Blussangeaux et Chaussin (Mathiaut 1999), et une cruche à bec verseur pincé et décor à la molette formé d’une double ligne de carrés figure dans la nécropole de Delle (Colney 1995, p. 181).

Les gobelets tronconiques

Les gobelets à panse biconique

Une forme rare à Pratz

L’arrivée précoce du pot à lèvre en bandeau
La spécificité du mobilier de Pratz réside dans l’apparition du pot à cuire en pâte sombre à lèvre en bandeau vertical, dit bandeau de deuxième génération, qui se distingue des bandeaux de première génération par une lèvre plus haute et moins en relief. Cette évolution typologique a été mise en évidence dans la synthèse sur les habitats ruraux du haut Moyen Âge en Bresse, Lyonnais et Dauphiné (Faure-Boucharlat 2001, p. 70). Ces pots représentent 8,5 % des vases. L’origine de ces récipients demeure, à ce jour, inconnue et les analyses de pâte les distinguent nettement des productions du Val-de-Saône. Les comparaisons les plus proches pour le VIIIᵉ siècle se trouvent à Lyon Célestins (Arlaud et al. 2000, p. 116), ainsi que dans l’Ain à Beynost les Grandes Croix et dans la phase III de Poncin la Châtelarde (Faure-Boucharlat 2001, p. 156).

La confrontation du vaisselier de Pratz avec les ensembles mobiliers d’habitats régionaux pour la période de la fin de l’Antiquité au Moyen Âge central autorise
quelques constatations. Cependant, ces observations restent hypothétiques, car les ensembles sont rares, modestes, issus de sites peu ou pas stratifiés, et plus ou moins bien datés (tabl. 8 et 9). Les vaisseliers des sites datés du v° au vi° siècle sont dominés par les céramiques à pâte claire et les formes ouvertes de la vaisselle de table y conservent encore une place importante (fig. 72). Bessoncourt et Delle possèdent un faciès différent qui peut être expliqué par leur position géographique au nord-est de la Franche-Comté : ils sont proches de l’Alsace et semblent appartenir à une autre aire d’influence culturelle. Du vi° au x° siècle, un changement important s’est produit, les pâtes sombres ont supplanté les pâtes claires et les formes ouvertes disparaissent du vaisselier. Cette évolution survient sans doute entre le vi° et le x° siècle, une période quasiment inconnue par l’archéologie en Franche-Comté.

<table>
<thead>
<tr>
<th>sites</th>
<th>type d’occupation</th>
<th>datation</th>
<th>nb frag. / NMI</th>
<th>pâtes sombres</th>
<th>pâtes claires</th>
<th>formes fermées</th>
<th>formes ouvertes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burgille (25)</td>
<td>villa abandon</td>
<td>V° s.</td>
<td>1088/197</td>
<td>83 (42 %)</td>
<td>114 (58 %)</td>
<td>62 (43 %)</td>
<td>82 (57 %)</td>
</tr>
<tr>
<td>Sornay (70)</td>
<td>indéterminé mare</td>
<td>V° s.</td>
<td>135/21</td>
<td>3 (15 %)</td>
<td>18 (85 %)</td>
<td>7 (34 %)</td>
<td>14 (66 %)</td>
</tr>
<tr>
<td>Ménétru (39)</td>
<td>site de hauteur</td>
<td>V°/VI° s.</td>
<td>596/84</td>
<td>15 (18 %)</td>
<td>68 (82 %)</td>
<td>39 (47 %)</td>
<td>45 (53 %)</td>
</tr>
<tr>
<td>Tavaux (39)</td>
<td>habitat rural sur poteaux</td>
<td>V°/début VI° s.</td>
<td>30/7</td>
<td>0 (0 %)</td>
<td>7 (100 %)</td>
<td>5 (71 %)</td>
<td>2 (29 %)</td>
</tr>
<tr>
<td>Écriteuil (39)</td>
<td>site de hauteur</td>
<td>V°/VI° s.</td>
<td>175/28</td>
<td>5 (23 %)</td>
<td>23 (82 %)</td>
<td>16 (76 %)</td>
<td>5 (24 %)</td>
</tr>
<tr>
<td>Besançon (25)</td>
<td>habitat urbain</td>
<td>V°/VI° s.</td>
<td>229/31</td>
<td>5 (32 %)</td>
<td>19 (68 %)</td>
<td>15 (58 %)</td>
<td>13 (42 %)</td>
</tr>
<tr>
<td>Chavéria (39)</td>
<td>indéterminé fosse</td>
<td>V°/VI° s.</td>
<td>71/24</td>
<td>5 (21 %)</td>
<td>19 (79 %)</td>
<td>15 (65 %)</td>
<td>8 (35 %)</td>
</tr>
<tr>
<td>Pontarlier (25)</td>
<td>habitat rural nécropole</td>
<td>V°/VI° s.</td>
<td>570/55</td>
<td>5 (10 %)</td>
<td>19 (90 %)</td>
<td>50 (72 %)</td>
<td>13 (28 %)</td>
</tr>
<tr>
<td>Bessoncourt (70)</td>
<td>habitat rural sur poteaux</td>
<td>V°/VI° s.</td>
<td>68/19</td>
<td>5 (27 %)</td>
<td>14 (73 %)</td>
<td>16 (84 %)</td>
<td>3 (16 %)</td>
</tr>
<tr>
<td>L’Étoile (39)</td>
<td>établissement en pierre</td>
<td>1° moitié du VII° s.</td>
<td>130/37</td>
<td>6 (33 %)</td>
<td>12 (67 %)</td>
<td>16 (89 %)</td>
<td>2 (11 %)</td>
</tr>
<tr>
<td>Delle (90)</td>
<td>habitat rural sur poteaux</td>
<td>V°/VI° s.</td>
<td>30/12</td>
<td>6 (50 %)</td>
<td>6 (50 %)</td>
<td>6 (60 %)</td>
<td>4 (40 %)</td>
</tr>
<tr>
<td>L’Étoile (39)</td>
<td>habitat rural sur poteaux</td>
<td>V°/VI° s.</td>
<td>61/17</td>
<td>2 (12 %)</td>
<td>15 (88 %)</td>
<td>8 (61 %)</td>
<td>5 (39 %)</td>
</tr>
<tr>
<td>Pratz (39)</td>
<td>établissement en pierre</td>
<td>milieu VII° s.</td>
<td>1620/143</td>
<td>22 (15 %)</td>
<td>120 (85 %)</td>
<td>107 (75 %)</td>
<td>36 (25 %)</td>
</tr>
<tr>
<td>Choisy (39)</td>
<td>habitat rural sur poteaux</td>
<td>V°/VI° s.?</td>
<td>7/25</td>
<td>? (18 %)</td>
<td>? (82 %)</td>
<td>14 (78 %)</td>
<td>4 (22 %)</td>
</tr>
<tr>
<td>Vellechevreux (70)</td>
<td>habitat rural et sépultures</td>
<td>milieu VII°/XII° s.</td>
<td>329/98</td>
<td>75 (82 %)</td>
<td>17 (18 %)</td>
<td>95 (97 %)</td>
<td>37 (3 %)</td>
</tr>
<tr>
<td>Bourgogne (90)</td>
<td>habitat rural sur poteaux</td>
<td>V°/VI° s.</td>
<td>149/20</td>
<td>2 (10 %)</td>
<td>15 (88 %)</td>
<td>2 (12 %)</td>
<td>15 (33 %)</td>
</tr>
<tr>
<td>Courchapon (25)</td>
<td>habitat rural sur poteaux</td>
<td>fin VII°/XII° s.</td>
<td>274/52</td>
<td>48 (92 %)</td>
<td>4 (8 %)</td>
<td>50 (96 %)</td>
<td>2 (4 %)</td>
</tr>
</tbody>
</table>

Tabl. 9: Proportion des céramiques dans les habitats du haut Moyen Âge en Franche-Comté (S. Humbert).
Conclusion

Le faciès céramique de Pratz est caractérisé par la prédominance des pâtes claires qui correspondent à 84% du lot. Il est essentiellement constitué du service bistre qui semble être produit du Ve au VIIIe siècle, sans grandes modifications formelles : bols à collerette, bols carénés, cruches et pots à cuire, associés à quelques gobelets. On y observe une bonne représentation des formes ouvertes (25%) qui tendent à disparaître vers le milieu du VIIIe siècle. Les pâtes sombres représentent 15% des individus (tabl. 10). Les pots à lèvre en bandeau de deuxième génération sont les éléments les plus récents, ce qui distingue Pratz des autres sites francs-comtois comparables et incite à proposer le milieu du VIIIe siècle pour l’occupation du site. Cette datation est confirmée par le mobilier associé (verrerie et objets métalliques) et par deux datations radiocarbones effectuées sur des charbons de bois, l'une des années 561 à 687 de notre ère, avec des pics de probabilité en 648, 625 et 605 (Ly-10274), l'autre des années 661 à 728 (Ly-11917), avec 685, 705 et 755 comme pics probables.

Si l’ensemble céramique de Pratz se différencie nettement des ensembles observés en Alsace, il montre en revanche des parentés avec les sites de la vallée de l’Ain, en particulier Poncin situé à environ 80 km au sud et Château-Gaillard, mais aussi Trévoux dans la vallée de la Saône et Beynost plus au sud. Il est proche de Château-Gaillard et de Trévoux par la quantité importante de céramiques à pâtes claires, qui dépasse les 80%, et un taux de vaisselle de table de 35%. Il s’en distingue cependant par la présence de pots à lèvre en bandeau de deuxième génération et par un taux de gobelets relativement élevé (8,5%), comparable à ce que l’on peut observer à Poncin phase III (VIe-VIIe siècle) et à Beynost au milieu du VIIIe siècle. L’établissement de Pratz se trouve dans l’aire de diffusion des ateliers de la forêt de la Ferté, aux environs de Sevrey dans la région du Val-de-Saône, tout comme Genlis, Choisy, Saint-Vit et Chavérié. Le service bistre est distribué au nord par la Saône et la vallée du Doubs jusqu’en Suisse à Develier-Courtételle ou Porrentruy, à l’est par l’Ain et au sud par la Saône et le Rhône jusqu’à la Méditerranée. Au VIIe siècle, les voies antiques de Châlons-sur-Saône à Besançon et de Lyon/Bourg-en-Bresse à Besançon au pied du Revermont et de Saint-Claude par l’Ain, puis la Bienne vers Genève par le col de la Faucille constituent toujours les axes essentiels des échanges commerciaux. Pratz n’est pas un site enclavé, malgré sa configuration géographique. La céramique témoigne des échanges privilégiés avec l’ouest par la présence des productions du Val-de-Saône ; elle montrait également l’arrivée modeste de produits du nord-est, comme les vases à panse biconique à pâte grise. Enfin, la série de pots à lèvre en bandeau de deuxième génération trouve des parallèles au sud vers Lyon.

Avec ses 1 620 tessons représentant 143 récipients, l’établissement de Pratz a livré le lot de céramique le plus important de Franche-Comté et devient le site de référence pour la connaissance du vaisselier régional au haut Moyen Âge.

Les céramiques du XIe siècle

Les céramiques du XIe siècle – 7% du nombre total de vases (14 fragments parmi lesquels on dénombre 8 récipients) – sont toutes disséminées sur les secteurs les plus érodés du bâtiment artisanal. Elles ne sont associées à aucune structure et témoigneraient d’une réoccupation limitée. Deux grands groupes peuvent être distingués en fonction de la finesse de la pâte. Les céramiques tournées à pâte sombre fine sont de couleur gris clair, la surface lissée est de couleur gris plus foncé. Deux types de formes ont été recensés : des pots à bord déversés à lèvre arrondie (fig. 57, n° 3 et 4) et une cruche à lèvre à double ressaut (fig. 57, n° 1).

Tabl. 10: Caractéristiques du faciès céramique de Pratz (S. Humbert).

<table>
<thead>
<tr>
<th></th>
<th>NMI</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>pâtes sombres</td>
<td>22</td>
<td>15</td>
</tr>
<tr>
<td>vaisselle de table</td>
<td>45</td>
<td>32</td>
</tr>
<tr>
<td>bols</td>
<td>22</td>
<td>15</td>
</tr>
<tr>
<td>gobelets</td>
<td>12</td>
<td>8,5</td>
</tr>
<tr>
<td>pots à cuire</td>
<td>91</td>
<td>64</td>
</tr>
<tr>
<td>pots 2e génération</td>
<td>12</td>
<td>8,5</td>
</tr>
</tbody>
</table>

1. Tous les pourcentages donnés sont calculés sur le NMI.
Les céramiques tournées à pâte sombre à dégraissant sableux ont une surface de couleur gris plus foncé ou noire, rugueuse au toucher. Trois types de formes ont été recensées: un gobelet (fig. 57, n° 8), une cruche à lèvre à double ressaut (fig. 57, n° 2) et des pots à bord déversés (fig. 57, n° 6, 7, 9 et 10).

Les cruches à lèvre à double ressaut sont attestées dans l’établissement rural de Quintigny (Jura), daté du xi-xii siècle par radiocarbone (Simonin 1995, p. 45). D’autres sont connues dans l’ancien castrum de Lons-le-Saunier (Jura), mais le contexte de découverte reste imprécis pour une datation fiable (Guilhot, Necker 1995, p. 53). Des formes semblables existent à Meiniér dans le canton de Genève au début du xi siècle (Joguin Regelin 2011, p. 453). Quatre à cinq siècles séparent ce petit ensemble des céramiques de l’occupation mérovingienne.

Céramiques à pâte sombre (cuisson réductrice)

Céramiques à pâte fine, grise, xi siècle
1: Cruche à lèvre bipartite, anse bifide attachée à la lèvre, en céramique commune sombre, tournée, pâte gris clair, fine avec quelques inclusions, gris clair. Dimensions: diamètre à l’ouverture: 110 mm, hauteur conservée: 30 mm (Pratz 1 Us.31L10).

2: Cruche à lèvre bipartite, en céramique commune sombre, tournée, pâte gris clair à dégraissant sableux, surface gris plus foncé. Dimensions: diamètre à l’ouverture: 148 mm, hauteur conservée: 30 mm (Pratz 1 Us. Décap.).

3: Pot à lèvre arrondie, en céramique commune sombre, tournée, pâte fine, gris clair, surface noire. Dimensions: diamètre à l’ouverture: 120 mm, hauteur conservée: 20 mm (Pratz 1 Us. Diag. S3).

4: Pot à lèvre déversée, en céramique commune sombre, tournée, pâte fine, gris clair, surface gris plus foncé. Dimensions: diamètre à l’ouverture: 200 mm, hauteur conservée: 20 mm (Pratz 1 Us. 24FE5).

5: Fond, en céramique commune sombre, tournée, pâte fine avec quelques inclusions, gris clair, surface gris plus foncé. Dimensions: diamètre de fond: 66 mm, hauteur conservée: 30 mm (Pratz 1 Us. 114-117-119).

Céramiques à pâte grise, rugueuse, période indéterminée

6: Pot à lèvre déversée, en céramique commune sombre, tournée, pâte gris clair à dégraissant sableux, surface gris plus foncé, rugueuse. Dimensions: diamètre à l’ouverture: 120 mm, hauteur conservée: 17 mm (Pratz 1 Us. Décap.).

7: Pot à lèvre déversée, en céramique commune sombre, tournée, pâte gris brun à dégraissant sableux, surface gris plus foncé, rugueuse. Dimensions: diamètre à l’ouverture: 140 mm, hauteur conservée: 15 mm (Pratz 1 Us. Décap.).

8: Gobelet, en céramique commune sombre, tournée, à pâte gris clair à dégraissant sableux, surface grise, légèrement rugueuse. Dimensions: diamètre à l’ouverture: 80 mm, hauteur conservée: 18 mm (Pratz 1 Us.21B6).

9: Pot, en céramique commune sombre, tournée, pâte gris clair à dégraissant sableux, surface grise, rugueuse. Dimensions: diamètre à l’ouverture: 120 mm, hauteur conservée: 14 mm (Pratz 1 Us. Décap.).

Céramique non tournée

11: Récipient indéterminé, en céramique non tournée, pâte grise à gros dégraissant siliceux et coquillier. Dimensions: indéterminées (Pratz 1 Us.21B13).

Céramiques à pâte fine grise ou brun/rouge, surface noire, haut Moyen Âge

12: Gobelet biconique à lèvre arrondie, en céramique commune sombre, tournée, pâte fine, brun/rouge, surface noire lissée. Dimensions: diamètre à l’ouverture: 130 mm, hauteur conservée: 22 mm (Pratz 1 Us. Décap.).

13: Gobelet à lèvre arrondie, panse décorée de cordons (groupe H), en céramique commune sombre tournée, pâte grise. Dimensions: diamètre à l’ouverture: 60 mm, hauteur conservée: 60 mm (Pratz 2 Us.114-117-119).

14: Fragment de panse de gobelet biconique orné de cordons (groupe H), en céramique commune sombre, tournée, pâte fine, brun/rouge, surface noire lissée. Dimensions: hauteur conservée: 53 mm (Pratz 1 Us.24FE5).

15: Fragment de gobelet biconique (groupe H), en céramique commune sombre, tournée, pâte fine, grise, surface grise plus foncée. Dimensions: largeur de panse maximum: 130 mm, hauteur conservée: 63 mm (Pratz 1 Us.20J15).

16: Gobelet biconique à lèvre arrondie, en céramique commune sombre, tournée, pâte fine, brun/rouge, surface noire lissée. Dimensions: diamètre à l’ouverture: 100 mm, hauteur conservée: 15 mm (Pratz 1 Us. Diag. S1).

17: Gobelet biconique à lèvre déversée, en céramique commune sombre, tournée, pâte fine, brun/rouge, surface noire lissée. Dimensions: diamètre à l’ouverture: 120 mm, hauteur conservée: 28 mm (Pratz 1 Us.31L10).
sée. Dimensions: diamètre à l’ouverture: 90 mm, hauteur conservée: 18 mm (Pratz 1 Us.24G6).

18: Gobelet à bord évasé, en céramique commune sombre tournée, pâte grise. Dimensions: diamètre à l’ouverture: 78 mm, hauteur conservée: 24 mm (Pratz 2 Us.122).

19: Bouteille à bord en entonnoir, en céramique commune sombre tournée, pâte grise à cœur brun rouge. Dimensions: diamètre à l’ouverture: 60 mm, hauteur conservée: 18 mm (Pratz 2 Us.114-116).

20: Cruche à anse ruban attachée à la lèvre, en céramique commune sombre tournée, pâte grise à dégraissant sableux. Dimensions: diamètre à l’ouverture: 70 mm, hauteur conservée: 20 mm (Pratz 2 Us.100).

Céramiques à pâte sombre, dégraissant sableux, haut Moyen Âge

21: Couvercle, en céramique commune sombre, pâte brune grossière à dégraissant sableux. Dimensions: diamètre à l’ouverture: 170 mm, hauteur conservée: 25 mm (Pratz 2 Us.124).

22: Pot à lèvre triangulaire décorée d’impressions à la molette: double ligne de petits carrés, en céramique commune sombre, tournée, pâte noire à dégraissant sableux. Dimensions: diamètre à l’ouverture: 114 mm, hauteur conservée: 15 mm (Pratz 2 Us.100).

23: Pot à lèvre en bandeau, en céramique commune sombre, tournée, pâte noire micacée à dégraissant sableux. Dimensions: diamètre à l’ouverture: 78 mm, hauteur conservée: 15 mm (Pratz 2 Us.124).

24: Pot à lèvre en bandeau, en céramique commune sombre, tournée, pâte gris/beige à dégraissant sableux et quelques particules de mica, surface gris plus foncé (numéro d’analyse de pâte: PRA 29). Dimensions: diamètre à l’ouverture: 140 mm, hauteur conservée: 26 mm (Pratz 1 Us. Décap.).

25: Pot à lèvre en bandeau légèrement incurvé, en céramique commune sombre, tournée, pâte noire micacée à dégraissant sableux, surface lissée. Dimensions: diamètre à l’ouverture: 117 mm, hauteur conservée: 24 mm (Pratz 2 Us.120).

26: Pot à lèvre en bandeau, en céramique commune sombre, tournée pâte noire micacée à dégraissant sableux, surface lissée. Dimensions: diamètre à l’ouverture: 120 mm, hauteur conservée: 30 mm (Pratz 2 Us.124).

27: Pot à lèvre en bandeau, en céramique commune sombre, tournée, pâte noire à dégraissant sableux et quelques particules de mica, surface noire. Dimensions: diamètre à l’ouverture: 150 mm, hauteur conservée: 20 mm (Pratz 1 Us.21B10).

28: Pot à lèvre en bandeau, en céramique commune sombre, tournée, pâte noire à dégraissant sableux et quelques particules de mica, surface noire (numéro d’analyse de pâte: PRA 31). Dimensions: diamètre à l’ouverture: 150 mm, hauteur conservée: 22 mm (Pratz 1 Us.31K6/M4).

29: Pot à lèvre en bandeau, en céramique commune sombre, tournée, pâte noire à dégraissant sableux et quelques particules de mica, surface noire. Dimensions: diamètre à l’ouverture: 130 mm, hauteur conservée: 23 mm (Pratz 1 Us.6E20).

30: Pot à lèvre en bandeau, en céramique commune sombre, tournée, pâte noire à dégraissant sableux et quelques particules de mica, surface noire (numéro d’analyse de pâte: PRA 27). Dimensions: diamètre à l’ouverture: 160 mm, hauteur conservée: 35 mm (Pratz 1 Us.24G6).

31: Pot à lèvre en bandeau, en céramique commune sombre, tournée, pâte noire à dégraissant sableux et quelques particules de mica, surface noire (numéro d’analyse de pâte: PRA 30). Dimensions: diamètre à l’ouverture: 140 mm, hauteur conservée: 23 mm (Pratz 1 Us. Décap.).

32: Pot à lèvre en bandeau, en céramique commune sombre, tournée, pâte noire à dégraissant sableux et quelques particules de mica, surface noire (numéro d’analyse de pâte: PRA 28). Dimensions: diamètre à l’ouverture: 144 mm, hauteur conservée: 30 mm (Pratz 1 Us.24).

33: Fond de pot, en céramique commune sombre, tournée, pâte noire à dégraissant sableux et quelques particules de mica, surface noire. Dimensions: diamètre du fond: 100 mm, hauteur conservée: 30 mm (Pratz 1 Us.31H6).

34: Fond de pot en céramique commune sombre, tournée, pâte noire micacée à dégraissant sableux. Dimensions: diamètre du fond: 100 mm, hauteur conservée: 80 mm (Pratz 2 Us.114-117).

Céramiques à pâte claire (postcuisson oxydante), haut Moyen Âge

35: Jatte à bord rentrant, ou couvercle, en céramique commune claire, tournée, pâte orangée à dégraissant sableux, décor impressions à la molette: ligne de chevrons. Dimensions: diamètre à l’ouverture: 140 mm, hauteur conservée: 24 mm (Pratz 1 Us.22K3, n° 28).

36: Jatte à bord rentrant et bec verseur pincé, décor impressions à la molette: ligne de chevrons, en céramique commune claire, tournée, pâte orangée à grise, à dégraissant sableux. Dimensions: diamètre à l’ouverture: 130 mm, hauteur conservée: 30 mm (Pratz 2 Us.100).

37: Jatte à collerette (mortier), en céramique commune claire, tournée, pâte beige à dégraissant sableux. Dimensions: diamètre à l’ouverture: 148 mm, hauteur conservée: 20 mm (Pratz 1 Us.31K8, n° 30).

38: Jatte à collerette (mortier), en céramique commune claire, tournée, pâte orangée à fin dégraissant, quelques nodules rouges et blancs (numéro d’analyse de pâte: PRA 7). Dimensions: diamètre à l’ouverture: 166 mm, hauteur conservée: 35 mm (Pratz 1 Us.31L29, n° 27).
39: Jatte à collerette (mortier), en céramique commune claire tournée, à pâte orangée fine, avec quelques nodules rouges et beiges (numéro d’analyse pâte: PRA 6). Dimensions: diamètre à l’ouverture: 158 mm, hauteur conservée: 40 mm (Pratz 1 Us. Diag. S3, n° 32).

40: Jatte à collerette (mortier), à bec verseur pincé, en céramique commune claire tournée, à pâte orangée à fin dégraissant, avec quelques nodules rouges et beiges (numéro d’analyse pâte: PRA 9). Dimensions: diamètre à l’ouverture: 170 mm, hauteur conservée: 32 mm (Pratz 1 Us.31O9, n° 33).

41: Jatte à collerette (mortier), en céramique commune claire tournée, à pâte orangée à dégraissant sableux, surface rugueuse. Dimensions: diamètre à l’ouverture: 146 mm, hauteur conservée: 20 mm (Pratz 1 Us.31O9, n° 31).

42: Jatte à collerette (mortier), en céramique commune claire, tournée, pâte à dégraissant sableux, tesson calciné. Dimensions: diamètre à l’ouverture: 182 mm, hauteur conservée: 40 mm (Pratz 1 Us.24FE5, n° 26).

43: Jatte à collerette (mortier), en céramique commune claire, tournée, pâte beige-orangé à cœur gris, à dégraissant sableux et quelques nodules rouges, traces d’utilisation au feu sur le pourtour de la lèvre (numéro d’analyse de pâte: PRA 5). Dimensions: diamètre à l’ouverture: 168 mm, hauteur conservée: 48 mm (Pratz 1 Us.22M3 et 31K7, n° 25).

44: Jatte à collerette (mortier), en céramique commune claire, tournée, pâte beige-orangé à dégraissant sableux, quelques grosses inclusions, décor imprimé à la molette: lignes de losanges sur la lèvre et la panse (numéro d’analyse de pâte: PRA 8). Dimensions: diamètre à l’ouverture: 186 mm, hauteur conservée: 33 mm (Pratz 1 Us.31M8, n° 29).

45: Jatte à bord évasé, en céramique commune claire tournée, pâte orangée à dégraissant sableux, décor de cannelures. Dimensions: diamètre à l’ouverture: 140 mm, hauteur conservée: 25 mm (Pratz 1 Us.31O8, n° 34).

46: Jatte carénée à bord évasé, en céramique commune claire, tournée, pâte beige-orangé à dégraissant sableux, décor impressions à la molette: ligne de chevrons tête-bêche, surface noircie (numéro d’analyse pâte: PRA 4). Dimensions: diamètre à l’ouverture: 190 mm, hauteur conservée: 50 mm (Pratz 1 Us.31J7, n° 36).

47: Bol/jatte caréné, en céramique commune claire, tournée, pâte beige jaune à dégraissant sableux et quelques nodules rouges, décor: rainures horizontales, traces de feu sur la paroi externe (numéro d’analyse pâte: PRA3). Dimensions: diamètre à l’ouverture: 160 mm, hauteur conservée: 40 mm (Pratz 1 Us.31L8, n° 37).

48: Bol/jatte caréné, en céramique commune claire tournée, pâte beige brun, à dégraissant sableux, décor de cannelures horizontales, tesson calciné. (numéro d’analyse pâte: PRA 2). Dimensions: diamètre à l’ouverture: 150 mm, hauteur conservée: 45 mm (Pratz 1 Us.24H4, n° 38).

49: Bol/jatte caréné, en céramique commune claire tournée, pâte beige brun à dégraissant sableux, tesson calciné. Dimensions: diamètre à l’ouverture: 148 mm, hauteur conservée: 21 mm (Pratz 1 Us.22Q2, n° 69).

50: Bol/jatte à bord légèrement rentrant, en céramique commune claire, tournée, pâte beige/brun à dégraissant sableux, décor de cannelures horizontales, traces de feu sur la paroi externe. Dimensions: diamètre à l’ouverture: 130 mm, hauteur conservée: 30 mm (Pratz 1 Us.21B13, n° 40).

52: Fond de forme ouverte, en céramique commune claire tournée, à pâte beige-orange à dégraissant sableux blanc de 1 mm de diamètre et quelques grosses inclusions de quartz. Dimensions: diamètre de fond: 88 mm, hauteur conservée: 40 mm (Pratz 1 Us. Diag. S1, n° 35).

55: Gobelet, en céramique commune claire, tournée, pâte fine beige orangé à dégraissant sableux. Dimensions: diamètre à l’ouverture: 110 mm, hauteur conservée: 25 mm (Pratz 1 Us.31L10, n° 43).

57: Gobelet ou bol, bord légèrement incliné vers l’intérieur, en céramique commune claire, tournée, pâte orangée à dégraissant sableux. Dimensions: diamètre à l’ouverture: 110 mm, hauteur conservée: 25 mm (Partz 1 Us.31L10, n° 43).

59: Fond de cruche petit modèle, en céramique commune claire, tournée, pâte fine, beige à cœur gris, décor impressions à la molette: lignes de rectangles (numéro d'analyse pâte: PRA 10). Dimensions: diamètre de fond: 60 mm, hauteur conservée: 70 mm (Pratz 1 Us. Diag. S1, n° 41).

60: Pot à anse à bord rentrant, lèvre rabattue vers l'intérieur, anse ruban attachée à la lèvre, décors impressions à la molette: double ligne de petits rectangles verticaux, en céramique commune claire, tournée, pâte orangée à dégraissant sableux. Dimensions: diamètre à l'ouverture: 172 mm, hauteur conservée: 25 mm (Pratz 2 Us.114-115).

61: Pot à lèvre triangulaire, en céramique commune claire, tournée, pâte beige à dégraissant sableux (numéro d'analyse pâte: PRA 16). Dimensions: diamètre à l’ouverture: 168 mm, hauteur conservée: 30 mm (Pratz 1 Us.31M1131N7, n° 68).

62: Pot à lèvre triangulaire, en céramique commune claire, tournée pâte beige à dégraissant sableux, traces de feu sur le pourtour de la lèvre (numéro d'analyse pâte: PRA 17). Dimensions: diamètre à l'ouverture: 140 mm, hauteur conservée: 33 mm (Pratz 1 Us.31L10, n° 51).

64: Pot à lèvre rectangulaire, en céramique commune claire, tournée, pâte orangée, à dégraissant sableux. Dimensions: diamètre à l'ouverture: 174 mm, hauteur conservée: 18 mm (Pratz 1 Us.31M7, n° 67).

65: Pot à lèvre rectangulaire, en céramique commune claire, tournée, pâte orangée, à dégraissant sableux. Dimensions: diamètre à l'ouverture: 180 mm, hauteur conservée: 30 mm (Pratz 2 Us.124).

66: Pot à lèvre arrondie, en céramique commune claire, tournée pâte orangée, à dégraissant sableux. Dimensions: diamètre à l’ouverture: 153 mm, hauteur conservée: 40 mm (Pratz 2 Us.122).

68: Pot à lèvre arrondie, en céramique commune claire, tournée, pâte orangée à dégraissant sableux. Dimensions: diamètre à l’ouverture: 170 mm, hauteur conservée: 20 mm (Pratz 2 Us.122).

69: Pot à lèvre arrondie, en céramique commune claire, tournée pâte orangée à dégraissant sableux. Dimensions: diamètre à l’ouverture: 130 mm, hauteur conservée: 35 mm (Pratz 2 Us.122).

70: Pot à lèvre pendante arrondie, col cintré, en céramique commune claire, tournée, pâte orangée fine à dégraissant sableux, traces de feu sur le pourtour de la lèvre (numéro d’analyse pâte: PRA 12). Dimensions: diamètre à l’ouverture: 144 mm, hauteur conservée: 40 mm (Pratz 1 Us.24M67, n° 49).

71: Pot à lèvre pendante arrondie, en céramique commune claire, tournée, pâte fine beige-orangé à dégraissant sableux, traces de feu sur le pourtour de la lèvre (numéro d’analyse pâte: PRA 13). Dimensions: diamètre à l’ouverture: 190 mm, hauteur conservée: 35 mm (Pratz 1 Us.31L9, n° 50).

72: Pot petit modèle à lèvre pendante, en céramique commune claire, tournée, pâte fine brun-orangé à dégraissant sableux, traces d'utilisation au feu sur le pourtour de la lèvre (numéro d’analyse pâte: PRA 15). Dimensions: diamètre à l’ouverture: 90 mm, hauteur conservée: 15 mm (Pratz 1 Us.31L8, n° 46).

73: Pot à lèvre pendante, en céramique commune claire, tournée, pâte beige-orangé à fin dégraissant sableux, traces de feu sur le pourtour de la lèvre (numéro d’analyse pâte: PRA 23). Dimensions: diamètre à l’ouverture: 190 mm, hauteur conservée: 25 mm (Pratz 1 Us.31B8, n° 57).

74: Pot lèvre à bourrelet en amande, en céramique commune claire, tournée, pâte orangée à dégraissant sableux, décor d’impressions à la molette: lignes de triangles en résille, traces de feu sur le pourtour de la lèvre (numéro d’analyse pâte: PRA 19). Dimensions: diamètre à l’ouverture: 140 mm, hauteur conservée: 35 mm (Pratz 1 Us.31M7, n° 48).

75: Pot à lèvre à bourrelet en amande avec gorge interne, en céramique commune claire, tournée, pâte beige à dégraissant sableux, décor d’impressions à la molette: lignes de triangles en résille (numéro d’analyse pâte: PRA 18). Dimensions: diamètre à l’ouverture: 140 mm, hauteur conservée: 40 mm (Pratz 1 Us.6F20, n° 47).

76: Pot à lèvre rectangulaire à gorge interne, en céramique commune claire, tournée, pâte orangée à dégraissant sableux (numéro d’analyse pâte: PRA 26). Dimensions: diamètre à l’ouverture: 140 mm, hauteur conservée: 27 mm (Pratz 1 Us. Décap, n° 44).

77: Pot à lèvre rectangulaire à gorge interne, en céramique commune claire, tournée à pâte orangée à dégraissant sableux, décor impressions à la molette: ligne de carrés juxtaposés. Dimensions: diamètre à l’ouverture: 126 mm, hauteur conservée: 42 mm (Pratz 1 Us.31J7, n° 61).

78: Pot à lèvre arrondie à gorge interne, col cintré, en céramique commune claire, tournée à pâte orangée à dégraissant sableux, décor impressions à la molette: ligne de carrés juxtaposés. Dimensions: diamètre à l’ouverture: 120 mm, hauteur conservée: 54 mm (Pratz 1 Us.31376, n° 53).

79: Pot à lèvre arrondie à gorge interne, en céramique commune claire, tournée à pâte orangée à dégraissant sableux. Dimensions: diamètre à l’ouverture: 126 mm, hauteur conservée: 54 mm (Pratz 1 Us. Décap., n° 52).
80: Pot à lèvre arrondie à gorge interne, en céramique commune claire, tournée, pâte orangée, à dégraissant sableux. Dimensions: diamètre à l'ouverture: 110 mm, hauteur conservée: 30 mm (Pratz 1 Us.100).

81: Pot à lèvre arrondie à gorge interne, panse ovoïde, décor ligne incisée horizontale, en céramique commune claire, tournée, pâte orangée à dégraissant sableux. Dimensions: diamètre à l'ouverture: 130 mm, hauteur conservée: 45 mm (Pratz 1 Us.122).

82: Pot petit modèle à lèvre arrondie à gorge interne, en céramique commune claire, tournée pâte orangée, à dégraissant sableux. Dimensions: diamètre à l'ouverture: 63 mm, hauteur conservée: 24 mm (Pratz 1 Us.100).

83: Pot à lèvre triangulaire à gorge interne, en céramique commune claire, tournée pâte orangée, à dégraissant sableux. Dimensions: diamètre à l'ouverture: 114 mm, hauteur conservée: 30 mm (Pratz 1 Us.22).

84: Pot à lèvre triangulaire à gorge interne, en céramique commune claire, tournée pâte orangée, à dégraissant sableux. Dimensions: diamètre à l'ouverture: 126 mm, hauteur conservée: 30 mm (Pratz 1 Us.31J6, n° 65).

85: Pot à lèvre triangulaire à gorge interne, en céramique commune claire, tournée pâte beige-orangé à fin dégraissant sableux, traces de feu sur le pourtour de la lèvre (numéro d'analyse pâte: PRA 22). Dimensions: diamètre à l'ouverture: 90 mm, hauteur conservée: 30 mm (Pratz 1 Us.22K2, diag. S1, n° 59).

86: Pot à lèvre triangulaire à gorge interne, en céramique commune claire, tournée à pâte orangée à dégraissant sableux, décor impressions à la molette: lignes de doubles carrés juxtaposés. Dimensions: diamètre à l'ouverture: 130 mm, hauteur conservée: 70 mm (Pratz 1 Us.31L10M13, n° 54).

87: Pot à lèvre triangulaire à gorge interne, en céramique commune claire, tournée, pâte beige-brun à noire, à dégraissant sableux, surface interne et externe noircie (numéro d'analyse pâte: PRA 21). Dimensions: diamètre à l'ouverture: 148 mm, hauteur conservée: 50 mm (Pratz 1 Us.31J6, n° 55).

88: Pot à lèvre triangulaire à gorge interne, en céramique commune claire, tournée, pâte brun clair à dégraissant sableux, décor à la molette ligne de carrés juxtaposés, traces de feu sur le pourtour de la lèvre, surface externe noircie (numéro d'analyse pâte: PRA24). Dimensions: diamètre à l'ouverture: 120 mm, hauteur conservée: 35 mm (Pratz 1 Us.21F4/22M3, n° 58).

89: Pot à lèvre à gorge interne ornée d'une rainure, en céramique commune claire, tournée, pâte beige à fin dégraissant sableux, décor à la molette lignes de triangles, traces de feu sur le pourtour de la lèvre, surface externe noircie (numéro d'analyse pâte: PRA 25). Dimensions: diamètre à l'ouverture: 150 mm, hauteur conservée: 90 mm (Pratz 1 Us.31M8M11, n° 64).

90: Pot à lèvre rentrante à gorge interne, en céramique commune claire, tournée, pâte beige à dégraissant sableux, surface externe noircie. Dimensions: diamètre à l'ouverture: 120 mm, hauteur conservée: 15 mm (Pratz 1 Us.31I7/N10, n° 62).

91: Pot à lèvre en bandeau à gorge interne, en céramique commune claire, tournée, pâte beige-orangé à fin dégraissant sableux, traces de feu sur le pourtour de la lèvre (numéro d'analyse pâte: PRA 20). Dimensions: diamètre à l'ouverture: 120 mm, hauteur conservée: 25 mm (Pratz 1 Us.22, n° 63).

92: Pot à lèvre en bandeau à gorge interne décorée, décor d' impressions à la molette: double ligne de petits carrés juxtaposés, en céramique commune claire, tournée, pâte beige à dégraissant sableux. Dimensions: diamètre à l'ouverture: 110 mm, hauteur conservée: 36 mm (Pratz 1 Us. Diag. S1, n° 56).

93: Pot à lèvre décorée, décor d' impressions à la molette: ligne de petits carrés juxtaposés, en céramique commune claire, tournée, pâte orangée à dégraissant sableux. Dimensions: diamètre à l'ouverture: 90 mm, hauteur conservée: 15 mm (Pratz 2 Us.100).

94: Pot à lèvre déversée, en céramique commune claire, tournée, pâte beige fine à dégraissant sableux. Dimensions: diamètre à l'ouverture: 100 mm, hauteur conservée: 17 mm (Pratz 1 Us.22Q1, n° 45).

95: Fond de forme fermée, en céramique commune claire tournée, à pâte beige-orangé à dégraissant sableux, surface externe noircie. Dimensions: diamètre de fond: 66 mm, hauteur conservée: 30 mm (Pratz 1 Us.21B13/31M12, n° 70).

96: Fond de forme fermée, en céramique commune claire tournée, à pâte beige à dégraissant sableux. Dimensions: diamètre de fond: 70 mm, hauteur conservée: 34 mm (Pratz 1 Us. Diag. S4, n° 72).

97: Fond de forme fermée, en céramique commune claire tournée, à pâte orangée à dégraissant sableux, surface externe noircie. Dimensions: diamètre de fond: 78 mm, hauteur conservée: 30 mm (Pratz 1 Us.22Q3, déc., n° 71).

98: Fond de forme fermée, en céramique commune claire tournée, à pâte orangée à dégraissant sableux, surface externe noircie. Dimensions: diamètre de fond: 120 mm, hauteur conservée: 36 mm (Pratz 1 Us.24G6M6/21-31, n° 73).
Analyses chimiques des céramiques
V. Thirion-Merle, A. Schmitt

Un programme d’analyses a été effectué sur un échantillonnage représentatif pour déterminer la composition chimique des céramiques et en mesurer l’homogénéité afin de caractériser ces productions, puis vérifier si les céramiques bistre et les céramiques sombres ont des compositions similaires. L’objectif est de tenter de répondre à la question de l’origine de ces céramiques, la principale hypothèse étant celle de l’atelier de Sevrey dans la vallée de la Saône.

Le résultat de cette classification est présenté sous la forme d’un diagramme arborescent (dendrogramme) sur lequel chaque échantillon céramique est marqué par un trait vertical à la base du graphique. Les deux premiers exemplaires les plus ressemblants sont regroupés et reliés à une hauteur proportionnelle à la distance euclidienne mesurée entre leurs compositions chimiques. Plus les échantillons ont des compositions similaires, plus ils se rattachent à bas niveau. Sur le dendrogramme se détachent donc des groupes d’individus de compositions d’autant plus similaires qu’ils seront reliés à bas niveau. Tout échantillon rattaché à une hauteur relativement élevée à l’un ou l’autre de ces groupes aura une faible probabilité d’en faire partie. Il est ensuite indispensable d’examiner les données individuelles de composition et de vérifier les causes géochimiques des regroupements observés. Les groupes validés sont alors confrontés aux données archéologiques.

Caractérisation des céramiques

31 céramiques (26 céramiques bistre et 5 céramiques communes sombres) ont été analysées par fluorescence X. Les céramiques sont désignées par leur numéro d’analyse (PRA 1 à 31) (tabl. 11). Ces analyses montrent qu’il s’agit, quel que soit le type, de céramiques à pâte non calcaire (tabl. 12). Le lot n’est pas homogène, un certain nombre de constituants chimiques présentant des variations importantes. L’observation macroscopique montre d’ailleurs une texture de pâte relativement grossière, avec des inclusions blanches et grises de tailles variées et dont l’abondance est fluctuante (fig. III).

Une première classification ascendante hiérarchique a alors été effectuée à partir de l’ensemble des céramiques analysées (fig. 73). Sur ce dendrogramme, on peut voir que les céramiques sombres se distinguent nettement des céramiques bistre. En effet, trois d’entre elles forment un groupe à part en début de grappe (PRA 27, 30 et 31) – incluant également un exemplaire de céramique bistre...
Tabl. 11: Tableau de correspondance entre les numéros d’analyse et les numéros archéologiques (M. Regert, J.-Y. Langlois).

<table>
<thead>
<tr>
<th>n° analyse</th>
<th>description</th>
<th>n° archéo</th>
<th>n° planche fournie pour l’étude</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRA 1</td>
<td>service bistre, bol jatte caréné</td>
<td>39 (ou 51, pl. 4)</td>
<td>4</td>
</tr>
<tr>
<td>PRA 2</td>
<td>service bistre, bol jatte caréné, tesson calciné</td>
<td>48</td>
<td>4</td>
</tr>
<tr>
<td>PRA 3</td>
<td>service bistre, bol caréné</td>
<td>47</td>
<td>4</td>
</tr>
<tr>
<td>PRA 4</td>
<td>service bistre, bol caréné</td>
<td>36 (ou 46, pl. 4)</td>
<td>4</td>
</tr>
<tr>
<td>PRA 5</td>
<td>service bistre, mortier ou jatte à collerette typologiquement identique à PRA 6, 7 et 9</td>
<td>43</td>
<td>4</td>
</tr>
<tr>
<td>PRA 6</td>
<td>service bistre, mortier typologiquement identique à PRA 5, 7 et 9</td>
<td>32 (ou 39, pl. 4)</td>
<td>4</td>
</tr>
<tr>
<td>PRA 7</td>
<td>service bistre, mortier typologiquement identique à PRA 5, 6 et 9</td>
<td>27 (ou 38, pl. 4)</td>
<td>4</td>
</tr>
<tr>
<td>PRA 8</td>
<td>service bistre, mortier ou jatte à collerette légèrement différent des mortiers PRA 5, 6, 7 et 9</td>
<td>44</td>
<td>4</td>
</tr>
<tr>
<td>PRA 9</td>
<td>service bistre, mortier typologiquement identique à PRA 5, 6 et 7</td>
<td>33 (ou 40, pl. 4)</td>
<td>4</td>
</tr>
<tr>
<td>PRA 10</td>
<td>service bistre, cruche</td>
<td>58</td>
<td>5</td>
</tr>
<tr>
<td>PRA 11</td>
<td>service bistre, cruche</td>
<td>42 (ou 57, pl. 5)</td>
<td>5</td>
</tr>
<tr>
<td>PRA 12</td>
<td>service bistre, pot à lèvre pendante à section triangulaire typologiquement identique à PRA 13</td>
<td>49 (ou 69, pl. 6)</td>
<td>6</td>
</tr>
<tr>
<td>PRA 13</td>
<td>service bistre, pot à lèvre pendante à section triangulaire typologiquement identique à PRA 12</td>
<td>70</td>
<td>6</td>
</tr>
<tr>
<td>PRA 14</td>
<td>service bistre, pot à lèvre à section triangulaire typologiquement identique à PRA 16 et 17</td>
<td>66 (ou 62, pl. 6)</td>
<td>6</td>
</tr>
<tr>
<td>PRA 15</td>
<td>service bistre, pot à lèvre à section triangulaire</td>
<td>46 (ou 71, pl. 6)</td>
<td>6</td>
</tr>
<tr>
<td>PRA 16</td>
<td>service bistre, pot à lèvre à section triangulaire typologiquement identique à PRA 14 et 17</td>
<td>60</td>
<td>6</td>
</tr>
<tr>
<td>PRA 17</td>
<td>service bistre, pot à lèvre à section triangulaire typologiquement identique à PRA 14 et 16</td>
<td>51 (ou 61, pl. 6)</td>
<td>6</td>
</tr>
<tr>
<td>PRA 18</td>
<td>service bistre, pot à lèvre, en bourrelet en forme d’amande typologiquement identique à PRA 19</td>
<td>47 (ou 74, pl. 6)</td>
<td>6</td>
</tr>
<tr>
<td>PRA 19</td>
<td>service bistre, pot à lèvre, en bourrelet en forme d’amande typologiquement identique à PRA 18</td>
<td>48 (ou 73, pl. 6)</td>
<td>6</td>
</tr>
<tr>
<td>PRA 20</td>
<td>service bistre, pot à lèvre à gorge</td>
<td>63 (ou 90, pl. 8)</td>
<td>8</td>
</tr>
<tr>
<td>PRA 21</td>
<td>service bistre, pot à lèvre à gorge</td>
<td>55 (ou 86, pl. 8)</td>
<td>8</td>
</tr>
<tr>
<td>PRA 22</td>
<td>service bistre, pot à lèvre triangulaire à gorge interne</td>
<td>84, ex. 59, ex. 10</td>
<td>7</td>
</tr>
<tr>
<td>PRA 23</td>
<td>service bistre, pot à lèvre pendante</td>
<td>71</td>
<td>6</td>
</tr>
<tr>
<td>PRA 24</td>
<td>service bistre, pot à lèvre triangulaire à gorge interne</td>
<td>87</td>
<td>8</td>
</tr>
<tr>
<td>PRA 25</td>
<td>service bistre, pot à lèvre à gorge</td>
<td>64 (ou 88, pl. 8)</td>
<td>8</td>
</tr>
<tr>
<td>PRA 26</td>
<td>service bistre, pot à lèvre rectangulaire à gorge interne</td>
<td>44 (ou 75, pl. 7)</td>
<td>7</td>
</tr>
<tr>
<td>PRA 27</td>
<td>commune sombre, pot à lèvre en bandeau</td>
<td>G6 US 24</td>
<td></td>
</tr>
<tr>
<td>PRA 28</td>
<td>commune sombre, pot à lèvre en bandeau</td>
<td>US 24</td>
<td></td>
</tr>
<tr>
<td>PRA 29</td>
<td>commune sombre, pot à lèvre en bandeau</td>
<td>US101</td>
<td></td>
</tr>
<tr>
<td>PRA 30</td>
<td>commune sombre, pot à lèvre en bandeau, particule de mica</td>
<td>US 21</td>
<td></td>
</tr>
<tr>
<td>PRA 31</td>
<td>commune sombre, pot à lèvre en bandeau</td>
<td>US 31</td>
<td></td>
</tr>
</tbody>
</table>

(PRA 21) – et les deux autres (PRA 28 et 29) se placent à l’autre extrémité de la grappe, en position marginale. Ces deux dernières étant reliées entre elles à une hauteur assez importante, on peut en conclure qu’elles ne se ressemblent guère. Si l’on regarde les compositions chimiques de ces céramiques sombres, on peut voir que PRA 27, 30 et 31 présentent des taux de chaux (CaO) et de potasse (K₂O) plus élevés, et des taux d’oxydes de fer (Fe₂O₃) et de titane (TiO₂) plus faibles par rapport aux céramiques communes bistre. En revanche, les deux autres céramiques communes sombres (PRA 28 et 29) présentent quant à elles des taux de potasse, d’oxyde de fer, de zirconium, de rubidium nettement plus faibles que les autres céramiques sombres et que les bistre, et des taux de vanadium bien plus élevés.
Ces résultats montrent qu’il existe au moins deux approvisionnements en céramiques communes sombres sur le site de Pratz. Mais il faudrait disposer d’un échantillonnage plus large pour s’en assurer.

Un autre petit groupe (nommé B sur la figure 73), constitué de 3 céramiques bistre (PRA 11, 15 et 20), est isolé en fin de groupe, montrant ainsi une différence notable par rapport aux autres céramiques bistre (Groupe A). D’après les données chimiques, ces trois céramiques se distinguent par des taux de silicium (SiO₂) plus faibles et des taux d’alumine (Al₂O₃) beaucoup plus élevés, ce qui suggérerait une argile plus kaolinitique, elles ont également des teneurs en fer et en vanadium plus élevées. Ces trois céramiques pourraient avoir été fabriquées à partir d’une argile différente de celle des autres céramiques bistre.

Quant au lot de céramiques bistre restant, il n’est pas aussi homogène que l’on aurait pu le croire. En effet, on voit apparaître plusieurs sous-ensembles et quelques exemplaires que l’on dit marginaux dans la mesure où ils ne s’intègrent pas réellement à un ensemble et se rattachent à ceux-ci à des hauteurs
Fig. 72: Proportion des pâtes claires et des pâtes sombres (en grisé) sur les habitats du haut Moyen Âge de Franche-Comté (S. Humbert).

Fig. 73: Analyse de grappe des céramiques analysées de Pratz (les céramiques sombres ont été distinguées par un rond noir). Classification ascendante hiérarchique en affinité moyenne non pondérée relative aux 17 constituants suivants: CaO, Fe₂O₃, TiO₂, K₂O, SiO₂, Al₂O₃, MgO, MnO, Zr, Sr, Rb, Zn, Cr, Ni, Ba, V, Ce (M. Regert, J. Langlois).
assez élevées ; il s’agit de PRA 12 et PRA 25. Il faut également signaler que l’un des sous-ensembles n’est constitué que de mortiers (PRA 6, 7 et 9), ce qui en ferait un groupe typologique. Il se distingue par des taux de potasse (K₂O) et de rubidium (Rb) plus faibles, ainsi que par des taux d’oxyde de manganèse (MnO) bien plus élevés. Les deux autres mortiers analysés (PRA 5 et 8), bien classés dans le groupe A, présentent en revanche des compositions similaires aux céramiques bistre.

Recherche de l’origine de ces céramiques

Afin de tenter de déterminer l’origine des céramiques bistre ou des céramiques communes sombres, nous avons comparé les résultats d’analyse avec, en premier lieu, le groupe des références établi pour la zone des ateliers de Sevrey, situés à proximité de la forêt de la Ferté dans la vallée de la Saône, dans la mesure où les céramiques des sites de Pratz et de Sevrey présentent des ressemblances typologiques et chronologiques évidentes.

Le groupe de référence de Sevrey

Nous disposons d’un peu moins d’une centaine d’analyses pour les productions de Sevrey – céramiques bistre produites durant le haut Moyen Âge appartenant au groupe I de Renimel, céramiques à pâte gris clair du groupe II de Renimel, issues de divers sites de fouilles – ainsi que d’une dizaine d’analyses d’argiles (Renimel 1974 ; Mani 2004).

L’étude des données chimiques de Sevrey a montré une variabilité importante des compositions, certains éléments chimiques présentant notamment de forts écarts à la moyenne (manganèse, strontium, baryum, etc.). Cette variabilité peut en partie être expliquée par le contexte argileux autour de Sevrey (cf. infra), mais certains éléments chimiques concernés (baryum, manganèse et phosphore, notamment) peuvent aussi indiquer de phénomènes de pollution dus à l’enfouissement. Les ateliers de Sevrey ayant fonctionné durant une longue période, les zones de prélèvement d’argile ont pu se déplacer au cours du temps. De plus, la zone géographique des ateliers est assez étendue. Tous ces facteurs contribuent globalement à la dispersion des compositions de Sevrey.

Pour constituer un groupe de référence, il est nécessaire de ne conserver que les échantillons formant un lot le plus homogène possible et numériquement suffisamment important pour être fiable, tout en tenant compte de la variabilité des compositions.

Notre groupe de référence est composé de 52 exemplaires de céramiques, dont la plupart appartiennent au groupe des céramiques communes à pâte orange non calcaire (groupe I de Renimel) ; seuls 7 exemplaires présentent une pâte gris clair et appartiennent au groupe II de Renimel. Ces exemplaires ont été conservés dans le groupe de référence, car leurs compositions chimiques ne diffèrent pas des compositions des céramiques bistre de Sevrey. Ce groupe de référence a tendance à se répartir en trois sous-groupes, reflets de la grande variabilité des compositions des argiles locales.

En effet, à Sevrey et dans ses alentours, coexistent plusieurs formations contenant des argiles. La première dite des sables et argiles de la Ferté (P-IV F) est datée du Pliocène et comporte des passées sableuses et argileuses plus ou moins mélangées, ainsi qu’une couverture limoneuse riche en argile et incluant fréquemment des pisolithes ferrugineux. Elle est, par endroits, masquée par une formation interprétée comme une terrasse ancienne de la Saône (SW) qui
contient un niveau argileux d’une épaisseur de 1,50 m. La deuxième est une formation fluvialacustre dite formation de Saint-Cosme, mal calée chronologiquement et dont le mode de dépôt reste sujet à controverses. Elle comprend des lentilles silteuses, argileuses et marneuses entrecoupées par des passées détritiqutes sableuses. Enfin, à la Charmée, le long de la vallée de la Corne, affleurent les marnes de Bresse (P-IV M) qui comportent également des niveaux argileux (Bonvalot et al. 1984).

Les limites de ces formations sont assez floues et difficiles à repérer sur le terrain, toutes ont pu être utilisées par les potiers. Les prélèvements d’argiles effectués sur la commune de Sevrey et dans la forêt de la Ferté n’ont pu être reliés précisément à l’une ou l’autre de ces formations, mais ils ont cependant permis d’identifier des variations importantes de différents constituants chimiques et notamment des taux d’oxyde de fer (de 2,6 à 7%), d’alumine (11,4 % à 20,3 %) et oxyde de manganèse (0,033 % à 0,180 %) (Mani 2005).

Par ailleurs, les comparaisons effectuées avec deux autres ateliers médiévaux de céramiques bistre (Givry et la Charmée) et un atelier gallo-romain de céramiques communes (La Ferté), tous situés à proximité de Sevrey, ont permis de montrer qu’ils entrent globalement dans le rang des variations observées à Sevrey, d’où la difficulté de séparer les productions de ces différents ateliers (Mani 2005).

Dans ce contexte, l’aire géographique d’incertitude des attributions d’origine est assez large. On parlera alors d’attribution à la zone des ateliers de la forêt de La Ferté plutôt qu’à un atelier précis.

Comparaison des exemplaires de Pratz et des références de Sevrey

La classification ascendante hiérarchique des céramiques de Pratz et de nos références permet de proposer plusieurs observations (fig. 74).

Tout d’abord, les céramiques communes sombres – dont nous avons déjà remarqué la différence de composition par rapport aux autres exemplaires de Pratz – se placent en position marginale de part et d’autre de la grappe, elles ne correspondent manifestement pas aux compositions des références de Sevrey. Et, comme nous l’avons déjà signalé, il existe au moins deux approvisionnements en céramiques communes sombres sur le site de Pratz.

Deux céramiques bistre (PRA 21 et PRA 25) se placent en début de grappe, en dehors des références de Sevrey. D’un point de vue géochimique, elles diffèrent entre elles, et surtout de nos références et même des exemplaires les plus marginaux du groupe de la forêt de La Ferté.

Les références de Sevrey se répartissent toujours en trois sous-groupes entre lesquels viennent s’intercaler les céramiques bistre découvertes à Pratz. Ces dernières forment de petits ensembles individualisés à l’intérieur même des références de Sevrey. Cette répartition indique une affinité de composition entre les exemplaires découverts à Pratz et les références de Sevrey. Ils présentent assurément de fortes ressemblances géochimiques, sans toutefois que l’on puisse affirmer qu’ils proviennent des mêmes ateliers. Les compositions chimiques des céramiques découvertes à Pratz semblent bien entrer dans le rang des variations des argiles de la forêt de La Ferté. À l’exception toutefois du petit groupe formé par PRA 11, 15 et 20 qui se place en fin de grappe, en position marginale. Ce groupe se distingue nettement des productions de Sevrey et son origine reste pour l’instant indéterminée.

Toutefois, avant de pouvoir assurer une attribution à la zone de la forêt de La Ferté, il est nécessaire de tester d’autres hypothèses d’origine.
Fig. 74 : Analyse de grappe des céramiques communes de Pratz et des références des ateliers de Sevrey. Classification ascendante hiérarchique en affinité moyenne non pondérée relative aux 17 constituants suivants : CaO, Fe₂O₃, TiO₂, K₂O, SiO₂, Al₂O₃, MgO, MnO, Zr, Sr, Rb, Zn, Cr, Ni, Ba, V, Ce (M. Regert, J. Langlois).
Autres hypothèses d’origine
Parmi les autres hypothèses d’origine, on peut penser à des ateliers situés plus au sud dans la vallée de la Saône, ou encore dans la région lyonnaise ou dans la vallée du Rhône. Pour tenter de clarifier les possibilités, des comparaisons ont été réalisées avec des ateliers connus ayant utilisé des argiles non calcaires, même si la typologie et la chronologie sont différentes, dans la mesure où nous ne disposons pas nécessairement de références pour les mêmes périodes. Il importe de vérifier si d’autres argiles présentent des ressemblances plus fortes avec les exemplaires découverts à Pratz que les références de Sevrey.
Une première vérification a été effectuée avec des ateliers situés au sud de Sevrey utilisant des argiles des terrasses de la Saône. Il s’agit d’un atelier gallo-romain situé à Mâcon et de deux ateliers médiévaux de céramiques communes sombres du Beaujolais (Saint-Georges de Reneins et Corcelles). Les comparaisons ont montré que les exemplaires de Pratz n’ont aucune affinité avec les argiles des formations alluviales de la Saône.
Un test a également été effectué par rapport aux argiles non calcaires de la région lyonnaise utilisées dans des ateliers gallo-romains ou médiévaux. Aucune ressemblance significative n’a été trouvée. Plus à l’est, la comparaison avec les productions connues d’Annecy et d’Aoste révèle également une grande différence de composition.
À titre d’illustration, le diagramme binaire représentant la relation entre le rubidium (Rb) et le nickel (Ni) montre bien la distinction entre les ateliers de Lyon, d’Annecy et d’Aoste, d’une part, et l’ensemble des références de Sevrey et des céramiques bistre découvertes à Pratz, ainsi que sur d’autres sites du Jura, d’autre part (fig. 75).

Fig. 75 : Diagramme binaire rubidium (Rb)/nickel (Ni) d’échantillons analysés des ateliers de Lyon, d’Annecy et d’Aoste, des références de Sevrey et des céramiques bistre découvertes à Pratz, ainsi que sur d’autres sites du Jura (M. Regert, J. Langlois)
Ainsi, parmi toutes les hypothèses d’origine, et dans la limite liée au fait que nous ne connaissons certainement pas toutes les argiles ni tous les ateliers, la plus forte ressemblance a été observée entre les exemplaires de Pratz et la zone de la forêt de La Ferté.
L’étude réalisée par C. Mani incluant deux autres sites jurassiens, Choisey et Chavéria, a montré que ces deux sites ont été approvisionnés par des ateliers de la zone de la forêt de La Ferté sans que l’on puisse réellement tout attribuer au groupe de référence de Sevrey (Mani 2005).
G. Thierrin-Michael, dans son étude sur Dévelier-Courtételle (Jura suisse), a mis en évidence l’existence de plusieurs groupes parmi les céramiques bistre, dont l’un est vraisemblablement originaire de la zone de la forêt de La Ferté (Thierrin-Michael 2006). Il nous a donc semblé nécessaire de comparer ces différents sites du Jura pour tenter d’identifier de possibles groupes de production communs.
La comparaison de notre groupe de références de Sevrey avec les céramiques bistre des sites de Chavéria, de Choisey, de Pratz, de Ménetru et ceux de Dévelier-Courtételle attribués à Sevrey par G. Thierrin-Michael ne montre pas de regroupement significatif des exemplaires découverts sur les sites jurassiens. Ils se placent en plusieurs petits ensembles au sein des références de Sevrey. Certains exemplaires paraissent marginaux, notamment PRA 12, PRA 24 et MEN 6. Aucune hypothèse ne peut pour l’instant être proposée quant à leur origine.

Conclusion

Les analyses des céramiques bistre et des céramiques à pâte grise de Pratz permettent de dégager trois informations sur l’approvisionnement en céramique du site.
Les céramiques communes à pâte grise ont au moins deux origines différentes et se distinguent parfaitement des céramiques bistre. Aucune hypothèse d’origine ne peut être formulée à ce stade.
Les céramiques bistre ne ressemblent pas aux références dont nous disposons actuellement pour la région lyonnaise, la basse vallée de la Saône, la vallée du Rhône en amont de Lyon ou même la région d’Annecy. On observe les plus fortes ressemblances avec les productions connues de Sevrey de la forêt de La Ferté (environ de Sevrey dans la vallée de la Saône). L’aire géographique d’incertitude des attributions d’origine est assez large dans ce secteur.
Les légers décalages peuvent être expliqués par la variabilité des argiles locales et par le décalage chronologique entre la zone d’atelier fouillée et la datation des contextes de Pratz. Il est toutefois d’imaginer qu’au cours du temps, la zone d’approvisionnement en argile se soit déplacée, les compositions chimiques variant alors. Il est cependant certain que les compositions chimiques mesurées pour Pratz entrent dans le domaine de variabilité des références des ateliers de la forêt de La Ferté.
La comparaison avec d’autres sites du Jura montre des circuits commerciaux similaires. Nous n’avons pas identifié de groupe de production commun entre ces sites autre que les exemplaires attribuables au groupe de la forêt de La Ferté. Quelques exemplaires (PRA 11, 12, 15, 20, 21, 24 et 25) n’ont pas pu être attribués : soit du fait de leur composition chimique altérée, soit parce que leur composition est unique et que nous ne disposons d’aucun élément de comparaison.
La verrerie
C. Munier

Le verre du haut Moyen Âge

Les typologies des récipients en verre du haut Moyen Âge ont essentiellement été réalisées à partir d’objets découverts dans les nécropoles mérovingiennes du nord de la France, le sud ayant très tôt abandonné les dépôts funéraires (Feyeux 1995). Elles servent donc classiquement de référent. Cependant, ces récipients sont avant tout des objets de la vie quotidienne : verres à boire, coupelles de présentation, flacons pour la table ou pour l’hygiène, lampes... Ils accompagnent ensuite parfois les défunt aux côtés des céramiques lors des dépôts funéraires alimentaires, ou symbolisent le parfum ou la lumière pour éloigner les désagréments de la mort (odeurs, ténèbres).

Les fouilles d’habitat du haut Moyen Âge, en milieu rural surtout, mais aussi en milieu urbain, se multiplient avec l’archéologie préventive et livrent elles aussi des objets en verre, le plus souvent hélas très partiels, mais qui attestent l’utilisation constante de ce matériau dans des contextes sociaux très diversifiés. Malgré la caractéristique fragmentaire des objets mis au jour, les typologies élaborées dans le Midi, associées à l’étude d’ateliers de verriers, complètent celles des régions septentrionales (Foy 1988, 1995).

Durant le haut Moyen Âge, les techniques de fabrication restent en droite ligne de celles des époques antérieures. L’utilisation de creusets, à partir de l’Antiquité tardive, intervient cependant comme une nouveauté. On continue à importer du verre brut des régions du sud-est méditerranéen – Égypte, Palestine, Syrie –, pour des productions secondaires, pour le travailler en Occident (Picon, Vichy 2003, p. 27). Mais ce n’est qu’au tournant du ix° siècle, plus nettement au x° siècle, que la présence de verre potassique révélera l’existence d’ateliers primaires régionaux (Foy 1989, p. 141 ; Picon, Vichy 2003, p. 27).

Le verre sur l’établissement de Pratz

Les fouilles réalisées à Pratz ont permis de collecter 79 fragments de récipients en verre, de verre à vitre et d’objets de parure (une perle) permettant d’isoler au moins 21 objets différents (tabl. 13). La majorité de ces restes est de très petite dimension.

Paradoxalement, le secteur du bâtiment artisanal a fourni plus de fragments de récipients que celui de la maison, de même que les fragments de verre à vitre et la perle. Ce fait est à mettre sur le compte d’une conservation différenciée entre les deux secteurs (érosion importante sur le bâtiment résidentiel).
Les récipients dominent largement, avec essentiellement des formes ouvertes (tabl. 14) qui correspondent a priori à des gobelets destinés à la boisson (vaisselle de table) et à une coupelle de présentation ou à une lampe (car le bord coupé non adouci est peu pratique pour la boisson). La seule forme fermée est représentée par un flacon résiduel gallo-romain.

Les récipients

Les récipients peuvent, grâce au profil de leur bord, être classés dans une ou plusieurs catégories typologiques, le départ de panse aidant parfois à préciser ou à exclure une forme particulière. Les lèvres des formes ouvertes déterminent trois techniques de finition : les bords ourlés (à l’intérieur ou à l’extérieur), les bords adoucis non ourlés, et les bords coupés et laissés bruts (non adoucis).

Lèvre ourlée

Les bords ourlés à l’intérieur (fig. 76, n° 1 à 4 et 11 à 13) et les dépats de panse fortement coniques concernent essentiellement les gobelets dits en cloche de type Feyeux 57 ou forme 28b du sud-est, à fond rond nécessitant un support. Ces gobelets sont soufflés, soit à la volée, soit dans des moules pour imprimer un décor varié : côtes, inscriptions, résilles. Le bord est repris au pontil pour étirer l’ouverture et former l’ourlet à la pince. La production de ce type de gobelets s’étend durant tout le VIIe siècle et se poursuit sans doute au VIIIe siècle.

Les bords à ourlets extérieurs larges et plats (fig. 76, n° 5 et 6) appartiennent à des gobelets hémisphériques ou à des coupes basses à fond rond : la forme 60 de Feyeux et la forme 28a du sud-est. On peut donc sans conteste attribuer les deux fragments de bords en bandeau de Pratz à ce type. Une légère différence de teinte atteste ici la présence de deux individus et non de deux fragments d’un même individu. La taille réduite de ces tessons interdit cependant de spécifier la hauteur des objets et donc de préciser s’il s’agit de coupes ou de bols. Ces récipients sont soufflés à la volée, leur fond est repris au pontil afin d’étirer et de replier l’ouverture après son réchauffement.
Fig. 76: Récipients en verre: gobelets en forme de cloche n° 1 à 4 et n° 11 à 14; coupes à ourlet large n° 5 et 6; gobelets à lèvre adoucie non ourlée n° 7 à 9; aryballe n° 15 (C. Munier; DAO D. Billoin, C. Munier).
Cette forme à bord en bandeau est produite au VIIe siècle, surtout dans la seconde moitié. En région champenoise, ces formes ne sont pas décorées, à l’exception d’un exemplaire à côtes moulées (Cabart, Feyeux 1995, p. 88). L’ourlet étroit extérieur (fig. 76, no 14) peut appartenir soit au type 60 (variante étroite du bandeau), soit au type 57, ces derniers gobelets, dits en cloche, connaissent cependant davantage des ourlets intérieurs (cf. supra). À Pratz, le verre bleuté prédomine. Les récipients à lèvre oulée, les plus nombreux, sont systématiquement soufflés dans un verre translucide de teinte bleu vert, vert bleuté ou bleuté de bonne qualité et d’affinage moyen (présence de nombreuses petites bulles). Les nuances de bleu correspondent au dosage des composants teintant le verre et à l’épaisseur de celui-ci. Cet ensemble paraît suffisamment homogène pour suggérer une production issue d’un même atelier, mais des analyses en laboratoire seraient nécessaires pour en être certains. La caractérisation des verres à partir d’un échantillonnage diversifié, constitué de verres bruts, de déchets de fabrication ou de verres manufacturés provenant du Midi, de la vallée du Rhône et du Proche-Orient, a en effet permis de déterminer des groupes dont la composition, et donc la teinte, diffère chronologiquement : ainsi, le verre bleuté remplace, dans la seconde moitié du VIIe siècle et au VIIIe siècle, le verre jaunâtre du milieu du VIe siècle (Foy, Nenna 2001, p. 41).
Comparaisons
Dans le domaine funéraire, la verrerie est rare dans la région ; cependant, la nécropole mérovingienne des Champs Traversains à Saint-Vit (Doubs) a fourni quelques objets en verre (12 % des dépôts) provenant de tombes remarquables par leur structure et par la qualité du costume funéraire. Ils sont parfois datés par le mobilier associé : gobelets carénés type Feyeux 53 (troisième quart du VIe siècle), bols apodes type 55 (quatrième quart du VIe siècle et environs de 600), verre à jambe type 43 (peut-être troisième quart du VIe siècle), coupes types 80 et 81. La présence de ces verreries témoignerait de l’avancée franque en Burgondie au VIe siècle (Manfredi-Gizard et al. 1998, p. 30) ; la nécropole de Saint-Vit est comparée avec celles de Brèves et de Charnay en Bourgogne, mais aussi avec celle d’Évans (Jura), toute proche, où un atelier de verrier est avéré (Foy 1989, p. 59). Des contextes similaires, situés à l’ouest de la Suisse (Elgg, Bâle-Bernerring, Kaiseraugst, Lausanne-Bel-Air), ont fourni des verreries typologiquement proches.
L’habitat mérovingien de Delle la Queue au Loup (Territoire de Belfort) a livré un bord de gobelet en cloche (T57), découvert dans une fosse associée à un bâtiment rural résidentiel et agricole à soubassement en pierre, daté par 14C entre 525 et 645 (Billoin 2010). Ce récipient à lèvre ourlée à l’intérieur et à panse décorée de côtes hélicoïdales moulées est en verre translucide de teinte bleu vert à fines bulles. Hors de nos frontières, mais tout proche de la région, le site de Develier-Courtételle (Jura suisse), a fourni, malgré l’ampleur de cet habitat rural mérovingien, seulement 156 fragments de récipients en verre : parmi les éléments identifiables sont représentés des bords de gobelets hauts (T51), hémisphériques (T55), en cloche (T57) et à lèvre ourlée en ruban (T60) (Mazimann 2006, p. 121).
En Bourgogne, les récentes fouilles d’habitats attestent l’utilisation plus ou moins courante des récipients en verre. À Passy (Yonne), c’est d’un habitat rural des VIe et VIIe siècles que proviennent de rares fragments de récipients en verre (10 individus en verre pour 174 en céramique), dont un bord adouci en verre vert daté du VIIe siècle, et un bord ourlé à l’extérieur en large ruban (T60) en verre bleu daté du VIe siècle. Là, comme à Pratz, un fragment de panse de coupe sans doute de T80, que les typologies placent au Ve et au début du VIe siècle, provient d’un contexte du VIIe siècle (étude en cours).
À Nevers (Nièvre), les occupations des VIIe–XVe siècles, à proximité du monastère Notre-Dame et Saint-Genest, ont livré des fragments de récipients en verre. Ils montrent une continuité dans l’utilisation des gobelets à bords ourlés ou adoucis et à fond rond, qui circulent encore longtemps après la période mérovingienne, parallèlement à de rares bords inédits et à des fonds repoussés. Le verre à vitre taillé est également présent dès le VIIe siècle, justifié par la fonction du contexte religieux (Munier 2009).

Divers
Un fragment de coupe ou de bol côtélè appartient vraisemblablement à une forme résiduelle. Le relief prononcé de la côte, ainsi que l’aspect dépoli de l’intérieur de la panse tendent à l’identifier à une coupe côtélée en verre pressé moulé du Haut-Empire (Ier et début IIe siècle). De plus, les décors côtélés ont un relief moins accusé sur les récipients mérovingiens. L’aryballe (fig. 76, no 15) est un petit flacon globulaire à goulot court, lèvre repliée à l’intérieur et anses rondes posées entre l’épaulement et la lèvre. Destiné aux soins, il est utilisé durant tout le Haut-Empire et ne semble pas faire partie des productions postérieures : il n’est pas rare cependant que des fragments
isolés soient découverts dans des contextes plus récents (Augst en Suisse, par exemple [Rütti 1991]).
Un seul fragment indéterminé se distingue des autres par son absence de teinte. Ces objets traduisent bien la présence d’un établissement du Haut-Empire à proximité.

Le verre à vitre

Des éléments en verre plat destinés au vitrage constituent une découverte exceptionnelle pour la période considérée et pour le contexte. Une nouvelle technique de fabrication apparaît dès l’Antiquité tardive et va dominer la production des verres à vitre du viie siècle : le soufflage en cylindre ou en manchon (Foy 2005, p. 60). Le verre étiré du Haut-Empire, épais et peu transparent, laisse peu à peu la place à un verre fin qui diffuse davantage la lumière. L’apport d’oxydes pour teinter le verre permet de jouer avec les couleurs pour des effets décoratifs.
Les deux plus gros éléments ont été découverts dans le secteur de la forge, un troisième provient du secteur de la maison. Deux petits fragments pourraient appartenir à la catégorie du verre plat, mais les dimensions trop réduites et l’absence de traces de taille ne permettent pas de les distinguer avec certitude de fragments de bouteilles à panse carrée par exemple. Les trois éléments de vitrage ont été publiés dans le catalogue de l’exposition de Bavay consacrée au verre à vitre (Bilboin, Munier 2005, p. 76-77) dont nous reprenons les descriptions.
Le premier élément (fig. IV, n° 16), en verre translucide de teinte bleu nuit à fines bulles (dimensions : 2,9 x 3,9 x 0,28 à 0,3 cm), est un rectangle grugé sur trois côtés : l’un des petits côtés est brisé net, volontairement ou accidentellement. Une face est dépolie plutôt que rugueuse et des traces de sillons parallèles, obliques par rapport à l’axe de la découpe, sont pris dans la masse de verre. Ces sillons, et la régularité de l’épaisseur, témoigneraient d’une mise en œuvre du verre par soufflage, selon le procédé du manchon ; l’aspect dépoli serait alors dû soit au contact avec le marbre lors du déploiement du manchon, soit à une altération des composants du verre, dont la teinte est peu commune sur un tel support : la face placée à l’extérieur est en effet fortement soumise aux contraintes climatiques. Le format de cet élément en verre définit un assemblage de plusieurs pièces de type vitrail.
Les deux autres fragments présentent un seul côté taillé au grugeoir : ils peuvent donc aussi bien correspondre à des éléments de petite taille découpés dans une plaque de verre qu’à des fragments de vitre brisée. Les deux faces lisses attestent la mise en œuvre de la feuille de verre par le procédé du manchon. Trapézoïdal, en verre translucide de teinte vert-bleuté, l’un d’eux (fig. IV, n° 17) possède de nombreuses bulles (dimensions : 3,9 x 2,1 x 0,1 à 0,2 cm). L’autre élément (fig. IV, n° 18), de forme triangulaire, est en verre translucide de teinte verte. Son bord grugé montre également des empreintes du système de maintien (plomb ?) matérialisé par deux petites marques en creux formant deux lignes parallèles. Les verres à vitre sont rarissimes sur les habitats ruraux du haut Moyen Âge, ils sont en revanche davantage présents en contextes religieux ou aristocratique (AFAV 2005). S’il reste l’apanage des églises, monastères et palais, l’usage du verre à vitre est aussi attesté en contexte civil. C’est le cas de la ferme domaniale des Serris en Seine-et-Marne datée des viiie et viiiie siècles par exemple (Gentili 2005, p. 78-80) ou de l’habitat urbain des viie-viiie siècles à Tours (Motteau 2005, p. 99).
La proximité de Pratz avec les monastères de Saint-Lupicin et de Saint-Romain peut justifier un approvisionnement ou une récupération aisée de verre à vitre.
La perle

De forme annulaire en verre translucide de teinte verte, cette perle porte un décor ondulé composé d’un fin filet de verre opaque jaune rapporté en zigzag serré (fig. IV, no 19). S’il ne reste que des traces résiduelles du verre jaune altéré, c’est le creux formé par la chaleur du verre rapporté sur la superficie de la perle qui permet de déterminer le motif.

La technique de fabrication de cet élément de parure est restituable grâce aux empreintes visibles sur l’objet. Après cuëillage dans le four, la paraison de verre a été enroulée autour d’une tige de fer ; le décor est ensuite appliqué à l’aide d’une autre paraison de verre opaque jaune.

Ce modèle de perle est recensé dans la typologie réalisée par R. Legoux pour le nord du Bassin parisien et le nord-est de la France sous le code typologique T19 (Legoux 1993, p. 103-115) où, chronologiquement, il couvre un siècle, d’environ 530 à 630.

Conclusion

Certains bords de récipients en verre donnent un terminus chronologique au contexte : les formes les plus tardives (types 60 et 57) ne sont pas antérieures au VIIe siècle, ce qui correspond aux datations fournies par la céramique et par les analyses physiques. La plupart de ces formes vont toutefois se perpétuer : les bords ourlés, par exemple, sont encore présents jusqu’au XIe siècle à Nevers (Nièvre), plus rares cependant que les bords adoucis (Munier 2009). Quant aux bords coupés, héritiers de l’Antiquité tardive, ils ne semblent plus être produits au-delà du VIe siècle, mais sont encore utilisés un siècle plus tard.

Les récipients en verre de l’établissement de Pratz ne se distinguent pas de ceux des autres habitats contemporains, révélant une diversité assez restreinte des formes dominées par le gobelet en cloche (T57), qui représente la moitié des effectifs. Cependant, on note que les gobelets provenant de l’édifice résidentiel possèdent des diamètres d’ouverture supérieurs à ceux issus du secteur artisanal. Ces récipients, très fins, témoignent de la maîtrise technique des verriers de l’époque. Finalement, seule la présence de verre à vitre suggère un statut social particulier de l’occupation.

Bien que quelques rares ateliers de verriers soient connus – Évans (Jura) étant le seul identifié dans la région (Foy 1991) –, les productions restent mal cernées : il est par conséquent difficile d’identifier la provenance des verreries utilisées à Pratz, région charnière entre les influences du nord et du sud.

Analyses physicochimiques de verres plats découverts à Pratz et en Franche-Comté

I. Pactat

Historique des recherches

La découverte d’éléments de vitrail sur des sites occupés durant l’Antiquité tardive et le haut Moyen Âge n’est plus aujourd’hui chose rare, notamment grâce à l’intensification des recherches archéologiques sur ces périodes et à l’attention désormais accordée à ce type de mobilier. En effet, longtemps considéré comme une invention du XIIe siècle, le vitrail ne fut que très peu étudié par le

Les vestiges les plus précoces en France ont été découverts dans la basilique Saint-Denis et sont attribués à la fin du IV° siècle (Van Ossel, Rodet-Belarbi 2003, p. 328). Les premiers vitraux sont donc contemporains ou légèrement postérieurs à la généralisation du soufflage en cylindre. En effet, cette technique de fabrication des panneaux de verre plat supplante peu à peu celle des vitres coulées et étirées, en vigueur depuis le I° siècle. La méthode consiste à souffler un tube de verre dont on coupe les extrémités, puis à le fendre dans la longueur pour former une plaque quadrangulaire (Foy, Fontaine 2008, p. 430-431). Ce procédé permet d’obtenir un verre plus fin, laissant mieux filtrer les rayons de la lumière et autorisant de ce fait des jeux de couleurs plus complexes dans des compositions qui participent au décor architectural.

La majorité des éléments de vitrail est soufflée en manchon et identifiable par deux surfaces lisses – dont l’une présente parfois des filandre – et par des bulles qui s’étirent parallèlement aux bords. Mais des découvertes ont révélé que les maîtres-verriers ont parfois retaillé des tessons de vitres coulées (Foy, Fontaine 2008, p. 442) ou même de vaisselle antique (Dumont, Pirault 2009, p. 69). Dans ce dernier cas, on remarque que les fragments semblent avoir été choisis en priorité pour leur couleur.

Jusqu’à l’apparition des premières scènes figurées, voire narratives, dans le courant du VII° siècle (Langlois 2009), l’éventail des teintes arborées par les verres plats est similaire à celui de la vaisselle (Peters, Fontaine-Hodiamont 2005 ; Dumont, Pirault 2009). Mais la complexification des assemblages au cours du haut Moyen Âge va peu à peu entraîner la diversification des couleurs des verres de vitrail.

Les propriétés intrinsèques du matériau utilisé sont donc primordiales. Pour cela, les analyses physicochimiques peuvent déterminer, d’une part, les caractéristiques géochimiques du verre, c'est-à-dire la nature des matières premières utilisées, et d’autre part, ses caractéristiques techniques, révélant l’usage éventuel de colorants, de décolorants ou d’opacifiants.

Apports et limites des analyses physicochimiques: la problématique des verres plats

L’approche archéométrique du mobilier verrier, qui se développe depuis quelques années, a permis de définir l’origine géographique d’une partie du verre brut en circulation au cours de l’Antiquité et du haut Moyen Âge. La plupart de ces analyses ont cependant été réalisées sur des verres creux et les synthèses sur le verre plat font défaut, en particulier pour les époques mérovingiennes et
carolingiennes. Il est donc naturel de se demander si le choix de la matière première brute diffère selon sa destination : vaisselle, verre à vitre ou vitrail. De plus, les structures d’atelier liées à la création de panneaux de verre plat devaient être plus lourdes que celles dévolues à la vaisselle. Les fours de recuit étaient notamment plus larges, pour pouvoir accueillir des panneaux. On peut donc supposer qu’elles étaient moins fréquentes et que l’élaboration du verre plat était plus centralisée. Cette hypothèse ne pourrait être totalement vérifiée que par la découverte de tels ateliers. Le cas échéant, l’homogénéité des résultats d’analyse dans une région à une époque donnée pourrait étayer ce postulat. Cependant, la composition du verre témoigne de la matière brute utilisée mais non de l’origine de l’atelier dans lequel elle a été retravaillée. En l’absence de témoins archéologiques, l’identification de la production d’un atelier secondaire ne pourrait donc se faire que par la reconnaissance d’un procédé technique distinctif, comme l’emploi d’un colorant particulier.

Le mobilier analysé

Ce sont donc ces constats qui ont motivé l’analyse des fragments de verre plat découverts sur l’établissement de Pratz, ainsi que de sept autres échantillons provenant de sites régionaux. De telles études ont déjà été menées sur une partie du mobilier mis au jour à Nevers, 12 rue Saint-Genest (Nièvre)3, à Mandeure Clos du Château (Doubs) (Pactat 2013), ainsi que sur un lot découvert dans l’ancien cloître Saint-Nazaire à Autun, en Saône-et-Loire (Velde 2009). Il nous est apparu nécessaire d’enrichir ces références par une comparaison avec d’autres sites géographiquement plus proches, également occupés durant le haut Moyen Âge, entre le v® et le vi® siècle. Excepté Mandeure et Pratz, on ne compte que trois sites en Franche-Comté ayant livré du verre plat, dans des proportions diverses : Luxeuil-les-Bains place de la République (Haute-Saône), Ménétru-le-Vignoble Gaillardon et Salins-les-Bains Camp du Château (Jura).

Les opérations en archéologie préventive menées sur la place de la République à Luxeuil-les-Bains ont révélé, entre autres, la présence d’une église funéraire, érigée au v® ou vi® siècle sur une nécropole du Bas-Empire. Elle s’inscrit par la suite dans un ensemble plus vaste, celui du monastère fondé au vi® siècle par le moine irlandais saint Colomban (Bully 2010). Parmi le mobilier verrier découvert sur le site, une trentaine de fragments de verre plat ont été identifiés, toutes époques confondues. Certains comportent des traces de grugeage sur un ou plusieurs bords. Deux d’entre eux ont été sélectionnés : un fragment de vitrail grugé sur deux côtés de couleur ambre (fig. V, LUX 1) et un fragment de vitrail bleu clair de forme triangulaire (fig. V, LUX 2). Ils ont été découverts dans une couche datée par chronologie relative et absolue entre le dernier tiers du vi® siècle et la fin du ix® siècle.

Le site de Gaillardon à Ménétru-le-Vignoble est un établissement de hauteur jurassien occupé aux v® et vi® siècles (Gandel, Billoin 2011). La découverte de plus de 2 600 tessons de verre – un nombre particulièrement élevé pour un contexte civil – reflète un niveau de vie assez aisé. Parmi ce lot, l’identification de plus d’une centaine de fragments de verre plat vient confirmer le statut particulier de cet établissement fortifié. Quelques-uns de ces éléments possèdent un bord grugé, évoquant leur insertion dans une résille de plomb pour former une composition complexe. Deux d’entre eux ont été choisis pour être comparés aux verres plats de Pratz : un fragment vert olive (fig. V, MEN 1) et un fragment...
incolore (fig. V, MEN 3) mis au jour dans un remblai de démolition contenant du mobilier des vᵉ-viᵉ siècles. Un troisième élément a été ajouté pour comparer la composition des verres à vitre et des vitraux : il s’agit d’un bord droit de vitre bleu verdâtre, soufflé en manchon, et découvert dans un dépotoir daté entre la fin du vᵉ siècle et la première moitié du viᵉ siècle (fig. V, MEN 2).

Le troisième site sélectionné est également un établissement de hauteur fortifié. Mais contrairement au précédent, le Camp du Château présente la particularité d’assumer une fonction religieuse, en plus de celle d’habitat. Un seul fragment de verre à vitre a été découvert dans le bâtiment civil : il est de teinte verdâtre, translucide et parsemé de bulles (fig. V, SAL 1). En revanche, la campagne de fouille 2011 menée sur l’édifice religieux (Gandel 2011) a livré six éléments de verre plat dont certains possèdent des bords retouchés au grugeoir. L’un d’entre eux présente une couleur particulière, un bleu vert très soutenu, qui ne laisse aucun doute quant à son utilisation dans un vitrail (fig. V, SAL 2).

Cette sélection vient donc s’ajouter aux trois fragments de Pratz et permet de comparer la composition des verres plats utilisés comme vitre et de ceux intégrés dans un vitrail-mosaïque (fig. V). La vaisselle en verre n’a pas été incluse dans cette étude, car elle constitue un lot homogène dont la typologie correspond bien à la période d’occupation du site : il n’était donc pas nécessaire d’en préciser la datation par des analyses physicochimiques. De plus, la pratique du recyclage, particulièrement fréquente au haut Moyen Âge, pourrait limiter l’interprétation des résultats sur un petit lot comme celui de Pratz. En effet, le mélange de plusieurs types de verre brisé et la succession des refontes nuisent à la distinction de groupes de composition particuliers (Vichy et al. 2007).

Méthode d’analyse

Les 10 fragments sélectionnés ont été envoyés pour étude au laboratoire du Centre Ernest Babelon, une antenne de l’Institut pour la recherche sur les archéomatériaux basée à Orléans. L’analyse du verre est réalisée par spectrométrie de masse couplée à un plasma inductif (LA-HR-ICP-MS : Laser Ablation High Resolution Inductively Coupled Plasma Mass Spectrometry). La méthode consiste à effectuer un microprélèvement de matière à la surface de l’échantillon par ablation laser. On peut considérer cette pratique comme non-destructrice, car le cratère obtenu est invisible à l’œil nu : environ 80 µm de diamètre pour 200 µm de profondeur. La matière ainsi prélevée est ensuite entraînée vers une torche plasma à haute température par un flux d’argon qui traverse la cellule dans laquelle est placé l’objet. La torche plasma va dissocier et ioniser les différents constituants du verre afin qu’ils soient mesurés par le spectromètre de masse. L’ensemble des données est ensuite traité par un programme de calcul sous Excel et l’on obtient ainsi la concentration de chaque composant sélectionné par l’opérateur.

Les prélèvements sont effectués sur des surfaces saines du verre pour être certains de bien analyser la matière d’origine et non celle qui a subi les altérations du temps. Deux mesures sont réalisées pour vérifier l’homogénéité de l’échantillon. La justesse de la méthode est régulièrement vérifiée à l’aide de verres étalons ou de verres archéologiques dont la composition est connue. La spectrométrie de masse peut mesurer jusqu’à 51 éléments, c’est-à-dire la quasi-totalité des composants majeurs, mineurs et trace du verre (Gratuze et al. 1997).

L’atout principal de la spectrométrie de masse est de pouvoir déterminer un très grand nombre de composants, dont les éléments trace. Ces derniers sont essentiellement utilisés pour les études de provenance, car la probabilité que...
des compositions identiques se retrouvent dans des productions d’ateliers géographiquement différents est faible. Ces éléments constituent une sorte d’empreinte chimique du matériau. Quant aux composants majeurs du verre et de ses adjuvants (colorants, décolorants et opacifiants), leur taux permet d’identifier la recette de fabrication et de déterminer la famille chimique à laquelle appartient le verre.

Caractérisation des verres plats

Les résultats des analyses (tabl. 15) sont exprimés en pourcentages lorsqu’il s’agit des composants majeurs et mineurs du verre, et en ppm (partie pour million) lorsqu’il s’agit des éléments trace. L’interprétation des résultats s’appuie en grande partie sur les travaux menés par D. Foy, M. Picon, M. Vichy et V. Thirion-Merle (Foy et al. 2003) et sur les renseignements fournis par B. Gratuzé.

Caractéristiques géochimiques

Comme la datation des contextes de découverte pouvait le laisser supposer, tous les fragments de verre plat sélectionnés sont des verres sodiques au natron. Les analyses physicochimiques ont révélé que les 10 éléments appartiennent à deux grands groupes de composition différente.

Le fragment de Ménétru, MEN 1, se distingue des autres échantillons par des teneurs en oxyde de fer (Fe₂O₃), en oxyde de titane (TiO₂) et en oxyde de manganèse (MnO) beaucoup plus élevées (tabl. 15). Ces taux sont caractéristiques du groupe 1, aussi appelé groupe HIMT (High Iron Manganese Titanium).

Les taux de deux éléments trace, comme l’oxyde de chrome III (Cr₂O₃) et le pentoxyde de vanadium (V₂O₅), montrent bien que les sables utilisés n’ont pas la même origine géographique (fig. 77). Le zirconium (ZrO₂) diffère également en fonction de la provenance des matières premières : son taux est de 318 ppm pour MEN 1, tandis qu’il varie entre 40 et 103 ppm pour les autres échantillons. Les taux d’oxyde de titane sont particulièrement intéressants puisque cet élément est principalement apporté par le sable. Or, les sables égyptiens possèdent fréquemment des teneurs en titane particulièrement élevées. La suprématie des verres appartenant au groupe HIMT 1 laisse supposer une origine égyptienne pour la matière première utilisée (Foy et al. 2003; Freestone 2005). D’un point de vue chronologique, ce groupe s’est également révélé d’une grande homogénéité puisqu’il concernerait essentiellement de la verrerie du Ve siècle. Cette datation correspond tout à fait au contexte de découverte de cet échantillon.

En contexte archéologique, les verres appartenant au groupe HIMT 1 sont facilement identifiables par une couleur vert olive caractéristique. Cette teinte se rencontre autant dans la vaisselle que dans le verre plat. Cette concordance couleur/composition a pu être vérifiée à Mandeure, grâce à l’analyse de deux fragments de verre plat et a permis d’attribuer au Ve siècle une partie des verres à vitre découverts sur le site. Il ne semble donc pas que le verre brut utilisé pour le soufflage de ce type de vitre ait été choisi en fonction de sa couleur, ni même de sa transparence, mais cette constatation paraît plutôt refléter la matière première disponible à une époque particulière. L’utilisation d’un verre vert olive pour des vitrages est effectivement assez répandue au Ve siècle : des panneaux quasi entiers ou de gros fragments ont été découverts à Jouars-Ponchartrain dans les Yvelines (Vanpeene 2005), dans une villa à Milhaud dans le Gard (Foy 2005), ou encore à Escolives-Sainte-Camille dans l’Yonne (Laurent 2005).
Tabl. 15: Résultats des analyses physicochimiques effectuées sur 10 fragments de verre plat découverts en Franche-Comté (résultats exprimés en % et en ppm) (I. Pactat).

<table>
<thead>
<tr>
<th></th>
<th>CaO</th>
<th>Fe₂O₃</th>
<th>TiO₂</th>
<th>K₂O</th>
<th>SiO₂</th>
<th>Al₂O₃</th>
<th>MgO</th>
<th>MnO</th>
<th>Na₂O</th>
<th>PO₄</th>
<th>ZrO₂</th>
<th>SrO</th>
<th>Cr₂O₃</th>
<th>BaO</th>
<th>CeO₂</th>
<th>CoO</th>
<th>CuO</th>
<th>PbO</th>
<th>Sb₂O₃</th>
<th>SnO₂</th>
<th>Cl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groupe 1 HIMT</td>
<td></td>
</tr>
<tr>
<td>MEN 1</td>
<td>5,60%</td>
<td>2,58%</td>
<td>0,39%</td>
<td>0,41%</td>
<td>66,3%</td>
<td>3,03%</td>
<td>0,96%</td>
<td>1,99%</td>
<td>17,7%</td>
<td>0,11%</td>
<td>318</td>
<td>503</td>
<td>99</td>
<td>348</td>
<td>24</td>
<td>17</td>
<td>57</td>
<td>23</td>
<td>15</td>
<td>12</td>
<td>0,71%</td>
</tr>
<tr>
<td>Groupe 2</td>
<td></td>
</tr>
<tr>
<td>PRA 1</td>
<td>7,95%</td>
<td>1,10%</td>
<td>0,11%</td>
<td>0,64%</td>
<td>66,4%</td>
<td>2,70%</td>
<td>1,10%</td>
<td>1,42%</td>
<td>17,4%</td>
<td>0,13%</td>
<td>100</td>
<td>812</td>
<td>26</td>
<td>377</td>
<td>19</td>
<td>15</td>
<td>131</td>
<td>323</td>
<td>544</td>
<td>180</td>
<td>0,78%</td>
</tr>
<tr>
<td>PRA 2</td>
<td>8,25%</td>
<td>1,47%</td>
<td>0,10%</td>
<td>0,29%</td>
<td>67,1%</td>
<td>2,57%</td>
<td>0,93%</td>
<td>0,19%</td>
<td>17,6%</td>
<td>0,07%</td>
<td>103</td>
<td>698</td>
<td>22</td>
<td>181</td>
<td>16</td>
<td>813</td>
<td>1327</td>
<td>758</td>
<td>332</td>
<td>233</td>
<td>0,83%</td>
</tr>
<tr>
<td>Groupe 3</td>
<td></td>
</tr>
<tr>
<td>LUX 2</td>
<td>7,81%</td>
<td>0,84%</td>
<td>0,08%</td>
<td>1,66%</td>
<td>69,3%</td>
<td>3,02%</td>
<td>0,81%</td>
<td>0,27%</td>
<td>14,8%</td>
<td>0,15%</td>
<td>62</td>
<td>493</td>
<td>20</td>
<td>453</td>
<td>20</td>
<td>9,0</td>
<td>1670</td>
<td>696</td>
<td>910</td>
<td>234</td>
<td>0,73%</td>
</tr>
<tr>
<td>MEN 2</td>
<td>7,96%</td>
<td>0,76%</td>
<td>0,07%</td>
<td>0,83%</td>
<td>68,4%</td>
<td>2,75%</td>
<td>0,86%</td>
<td>0,29%</td>
<td>17,0%</td>
<td>0,13%</td>
<td>68</td>
<td>566</td>
<td>24</td>
<td>253</td>
<td>16</td>
<td>12</td>
<td>158</td>
<td>299</td>
<td>704</td>
<td>52</td>
<td>0,77%</td>
</tr>
<tr>
<td>Série 3.2</td>
<td></td>
</tr>
<tr>
<td>MEN 3</td>
<td>6,30%</td>
<td>0,62%</td>
<td>0,05%</td>
<td>0,26%</td>
<td>69,7%</td>
<td>1,48%</td>
<td>0,53%</td>
<td>1,11%</td>
<td>18,7%</td>
<td>0,04%</td>
<td>48</td>
<td>537</td>
<td>12</td>
<td>229</td>
<td>12</td>
<td>7,2</td>
<td>14</td>
<td>8,92</td>
<td>0,32</td>
<td>9,3</td>
<td>0,97%</td>
</tr>
<tr>
<td>PRA 3</td>
<td>5,28%</td>
<td>0,69%</td>
<td>0,07%</td>
<td>0,65%</td>
<td>66,2%</td>
<td>1,52%</td>
<td>0,49%</td>
<td>0,84%</td>
<td>22,9%</td>
<td>0,06%</td>
<td>52</td>
<td>430</td>
<td>21</td>
<td>235</td>
<td>14</td>
<td>14</td>
<td>270</td>
<td>1777</td>
<td>3,88</td>
<td>287</td>
<td>0,95%</td>
</tr>
<tr>
<td>Série 3.3</td>
<td></td>
</tr>
<tr>
<td>LUX 1</td>
<td>6,20%</td>
<td>0,51%</td>
<td>0,07%</td>
<td>1,01%</td>
<td>71,4%</td>
<td>2,86%</td>
<td>0,68%</td>
<td>0,04%</td>
<td>16,2%</td>
<td>0,06%</td>
<td>58</td>
<td>414</td>
<td>26</td>
<td>234</td>
<td>16</td>
<td>2,9</td>
<td>131</td>
<td>73</td>
<td>73</td>
<td>18</td>
<td>0,80%</td>
</tr>
<tr>
<td>SAL 1</td>
<td>6,90%</td>
<td>0,31%</td>
<td>0,04%</td>
<td>0,63%</td>
<td>71,6%</td>
<td>2,64%</td>
<td>0,44%</td>
<td>0,03%</td>
<td>16,4%</td>
<td>0,06%</td>
<td>40</td>
<td>445</td>
<td>16</td>
<td>233</td>
<td>15</td>
<td>2,3</td>
<td>17</td>
<td>24</td>
<td>12</td>
<td>9,8</td>
<td>0,94%</td>
</tr>
<tr>
<td>SAL 2</td>
<td>8,61%</td>
<td>0,43%</td>
<td>0,06%</td>
<td>0,42%</td>
<td>68,9%</td>
<td>3,88%</td>
<td>0,58%</td>
<td>0,02%</td>
<td>12,7%</td>
<td>0,05%</td>
<td>61</td>
<td>576</td>
<td>13</td>
<td>295</td>
<td>16</td>
<td>2,7</td>
<td>337,18</td>
<td>138</td>
<td>44</td>
<td>2238</td>
<td>0,58%</td>
</tr>
</tbody>
</table>

Annexe : Résultats des analyses physico-chimiques effectuées sur dix fragments de verre plat découverts en Franche-Comté (résultats exprimés en % et en ppm, octobre 2011)
Les neuf autres fragments de verre plat appartiennent, quant à eux, au groupe 3, dit des verres romains. Il constitue le groupe le plus important des verres au natron, en Orient comme en Occident. Les similitudes entre la composition de ces verres et celle des productions de l'atelier de Jalame (Palestine) ont amené à proposer le rivage syropalestinien comme origine géographique du groupe 3 (Picon, Vichy 2003, p. 22-24; Freestone et al. 2000), là où Pline l'Ancien localisait déjà l'invention du verre, près de l'embouchure du fleuve Bélus (Histoire Naturelle, XXXVI, 65). La composition des sables varie peu de Tel Aviv à Sidon (Foy et al. 2003, p. 63-64). Ils sont facilement identifiables par leur faible teneur en oxyde de fer (Fe₂O₃) (tabl. 15). On peut donc imaginer que les quelques variantes observées au sein de ce groupe sont dues à des lieux d'extraction ou à des procédés techniques qui diffèrent d'une époque à l'autre.

Deux des verres plats analysés (PRA 3 et MEN 3) se démarquent dans le groupe 3 par des taux de chaux (CaO) et d'alumine (Al₂O₃) plus faibles, et par une teneur en soude (Na₂O) plus forte (tabl. 16a). Ces caractéristiques sont celles du sous-groupe 3.2, une série tardive des verres syropalestiniens. Elle semble avant tout concerner des verres datés entre la fin du v° et le début du vi° siècle. Cette proposition de datation n'interfère pas avec celle proposée pour le fragment de

Tabl. 16 : a : Teneurs en oxyde de fer (Fe₂O₃), en oxyde de titane (TiO₂), en oxyde de manganèse (MnO), en chaux (CaO), en alumine (Al₂O₃) et en soude (Na₂O) du groupe 3 (résultats exprimés en %, octobre 2011). b : Teneurs en chaux (CaO), en alumine (Al₂O₃), en soude (Na₂O), en zirconium (ZrO₂) et en strontium (SrO) des verres plats de Pratz (résultats exprimés en % et en ppm, octobre 2011). c : Teneurs en oxyde de fer (Fe₂O₃), en oxyde de titane (TiO₂), en magnésie (MgO), en potasse (K₂O) et en alumine (Al₂O₃) (résultats exprimés en %, octobre 2011).

<table>
<thead>
<tr>
<th>a</th>
<th>Fe₂O₃</th>
<th>TiO₂</th>
<th>MnO</th>
<th>CaO</th>
<th>Al₂O₃</th>
<th>Na₂O</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRA 1</td>
<td>1,10%</td>
<td>0,11%</td>
<td>1,42%</td>
<td>7,95%</td>
<td>2,70%</td>
<td>17,4%</td>
</tr>
<tr>
<td>PRA 2</td>
<td>1,47%</td>
<td>0,10%</td>
<td>0,19%</td>
<td>8,25%</td>
<td>2,57%</td>
<td>17,6%</td>
</tr>
<tr>
<td>PRA 3</td>
<td>0,69%</td>
<td>0,07%</td>
<td>0,84%</td>
<td>5,28%</td>
<td>1,52%</td>
<td>22,9%</td>
</tr>
<tr>
<td>LUX 1</td>
<td>0,51%</td>
<td>0,07%</td>
<td>0,04%</td>
<td>6,20%</td>
<td>2,86%</td>
<td>16,2%</td>
</tr>
<tr>
<td>LUX 2</td>
<td>0,84%</td>
<td>0,08%</td>
<td>0,27%</td>
<td>7,81%</td>
<td>3,02%</td>
<td>14,8%</td>
</tr>
<tr>
<td>MEN 1</td>
<td>2,58%</td>
<td>0,39%</td>
<td>1,99%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEN 2</td>
<td>0,76%</td>
<td>0,07%</td>
<td>0,29%</td>
<td>7,86%</td>
<td>2,75%</td>
<td>17,0%</td>
</tr>
<tr>
<td>MEN 3</td>
<td>0,62%</td>
<td>0,05%</td>
<td>1,11%</td>
<td>6,30%</td>
<td>1,48%</td>
<td>18,7%</td>
</tr>
<tr>
<td>SAL 1</td>
<td>0,31%</td>
<td>0,04%</td>
<td>0,03%</td>
<td>6,80%</td>
<td>2,64%</td>
<td>16,4%</td>
</tr>
<tr>
<td>SAL 2</td>
<td>0,43%</td>
<td>0,06%</td>
<td>0,02%</td>
<td>8,61%</td>
<td>3,88%</td>
<td>12,7%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>b</th>
<th>CaO</th>
<th>Al₂O₃</th>
<th>Na₂O</th>
<th>ZrO₂</th>
<th>SrO</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRA 1</td>
<td>7,95%</td>
<td>2,70%</td>
<td>17,4%</td>
<td>100</td>
<td>812</td>
</tr>
<tr>
<td>PRA 2</td>
<td>8,25%</td>
<td>2,57%</td>
<td>17,6%</td>
<td>103</td>
<td>698</td>
</tr>
<tr>
<td>PRA 3</td>
<td>5,28%</td>
<td>1,52%</td>
<td>22,9%</td>
<td>52</td>
<td>430</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>c</th>
<th>Fe₂O₃</th>
<th>TiO₂</th>
<th>MgO</th>
<th>K₂O</th>
<th>Al₂O₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRA 1</td>
<td>1,10%</td>
<td>0,11%</td>
<td>1,10%</td>
<td>0,64%</td>
<td>2,70%</td>
</tr>
<tr>
<td>PRA 2</td>
<td>1,47%</td>
<td>0,10%</td>
<td>0,93%</td>
<td>0,29%</td>
<td>2,57%</td>
</tr>
<tr>
<td>LUX 2</td>
<td>0,84%</td>
<td>0,08%</td>
<td>0,81%</td>
<td>1,66%</td>
<td>3,02%</td>
</tr>
<tr>
<td>MEN 2</td>
<td>0,76%</td>
<td>0,07%</td>
<td>0,86%</td>
<td>0,83%</td>
<td>2,75%</td>
</tr>
</tbody>
</table>
verre plat de Ménétru (MEN 3). Mais la question se pose pour l’échantillon provenant de Pratz (PRA 3) qui serait donc légèrement antérieur à l’occupation du site. La série 3.2 étant avant tout individualisée à partir de caractéristiques géochimiques liées à l’exploitation d’un gisement de sable en particulier, sa datation n’est pas totalement certaine, et c’est donc avec précaution qu’elle doit être utilisée. On pourrait enfin se demander si le fragment PRA 3 n’est pas un élément en réemploi, une hypothèse à envisager puisque le site de Pratz est situé à proximité de deux monastères fondés au vᵉ siècle (cf. infra).

Bien que les deux autres fragments de verre plat découverts à Pratz ne puissent être rapprochés d’une série du groupe 3, ils diffèrent de l’échantillon PRA 3 au niveau de plusieurs composants majeurs et trace : la chaux (CaO), la soude (Na₂O), l’alumine (Al₂O₃), le zirconium (ZrO₂) et le strontium (SrO) (tabl. 16b). Enfin, les échantillons de Luxeuil LUX 2 et de Ménétru MEN 2 partagent eux aussi des caractères de composition communs, avec des teneurs en oxyde de fer (Fe₂O₃), en oxyde de titane (TiO₂) et en magnésie (MgO) plus basses que les deux individus précédents, tandis que les taux de potasse (K₂O) et d’alumine (Al₂O₃) sont plus élevés (tabl. 16c).

Ces deux derniers lots ne peuvent être rapprochés d’une série du groupe 3 déjà identifiée. Ils correspondent sans doute à l’exploitation de gisements de sable différents, toujours situés sur la côte syropalestinienne comme le prouvent les éléments trace (fig. 77).

Caractéristiques techniques

Cette première classification des verres plats étudiés est fondée exclusivement sur la nature des matières premières, en particulier le sable. Elle a permis de distinguer deux origines différentes pour le verre brut utilisé : l’Égypte et la côte syropalestinienne. À l’intérieur du groupe 3, deux séries ont été identifiées, dont la série 3.2 déjà reconnue.

On peut en déterminer une troisième grâce au manganèse, ajouté au mélange pour le décolorer. Ce procédé technique caractérise les verres du groupe 3 dans son ensemble, excepté la série tardive 3.3. Les échantillons LUX 1, SAL 1 et SAL 2 possèdent respectivement un taux de manganèse de 0,04, 0,03 et 0,02 %, alors que celui des autres individus oscille entre 0,19 et 1,99 %. En proportion supérieure à 0,05 %, le manganèse constitue un ajout du verrier, ce qui n’est donc pas le cas pour la série 3.3 (Vichy et al. 2003, p. 15). Les faibles teneurs en oxyde de fer (Fe₂O₃) de ces trois fragments pourraient bien expliquer ce phénomène puisque la décoloration au manganèse n’aurait plus été nécessaire.

![Fig. 77: Teneur en pentoxyde de vanadium (V₂O₅) en fonction de la teneur en oxyde de chrome III (Cr₂O₃).](image-url)
Cela signifie également qu’il n’y a pas eu refonte de verres appartenant aux groupes 1 et 2 ou aux autres séries du groupe 3. Ce constat est particulièrement intéressant puisque la série 3.3 est datée entre la fin du VIIe et le début du VIIIe siècle : il s’agit donc de l’un des derniers groupes de verre au natron avant l’adoption des fondants végétaux. L’absence de recyclage témoigne donc de la persistance des importations de verre brut depuis le Proche-Orient à cette époque. Un groupe de composition similaire a également été reconnu à Nevers, grâce à l’analyse d’un bord de coupe (Pactat 2013, p. 89).

De façon générale, les 10 fragments de verre plat analysés ne révèlent pas une pratique intensive du recyclage. Les teneurs en plomb (PbO), en antimoine (Sb₂O₃) et en étain (SnO₂) sont relativement faibles, tout comme celles en potasse (K₂O) et en phosphore (P₂O₅) qui seraient plus élevées en cas de pollution par les cendres du foyer. Pourtant, le recyclage du verre est un phénomène fréquent au haut Moyen Âge. Cette particularité du lot étudié pourrait suggérer que les verriers auraient utilisé du verre brut plutôt que du groisil (verre recyclé).

Les verres appartenant au groupe syropalestinien ont en commun un faible taux d’oxyde de fer (Fe₂O₃). Cet élément donne à la matière vitreuse une teinte verdâtre, un effet qui n’est pas toujours désiré, surtout dans le cas des vitraux. Il est donc possible que les artisans verriers aient préféré un verre peu coloré à la base, pour y ajouter eux-mêmes les colorants de leur choix ou les utiliser tels quels.

4 des 10 fragments analysés possèdent une couleur particulière, qui ne découle pas seulement des impuretés contenues dans les matières premières mais bien de l’action d’un colorant.

Le fragment MEN 1, d’origine égyptienne, possède plus d’oxyde de fer (Fe₂O₃), de titane (TiO₂) et de manganèse (MnO) que les autres échantillons. Les deux premiers éléments sont naturellement contenus dans le sable, mais le troisième est en proportion trop élevé pour l’avoir été et a été ajouté. Sa présence, combinée à celle de l’oxyde de fer, donne au verre sa teinte vert olive particulière (Vichy et al. 2003, p. 16).

Le vitrail bleu nuit découvert à Pratz (PRA 2) doit, quant à lui, sa couleur à un mélange d’oxyde de cobalt (CoO) et d’oxyde de cuivre (CuO). Sa teneur en cobalt est effectivement bien supérieure à celle des autres échantillons analysés : 813 ppm contre moins de 20 ppm pour les autres. Ce colorant pose des problèmes lors des essais de classification, car il apporte automatiquement au mélange des éléments mineurs et trace qui rendent difficile la lecture des analyses. On ne peut donc attribuer l’individu PRA 2 à une série du groupe 3 plutôt qu’à une autre. Les indices macroscopiques — surface moins brillante d’un côté et filandres en relief —, caractéristiques du soufflage en manchon, constituent pourtant un terminus post quem, vers la fin du IVe siècle. Il s’agit donc bien d’un verre plat du haut Moyen Âge, apparemment en réemploi.

Le troisième fragment de verre plat concerné provient de Luxeuil (LUX 1) et est d’une couleur ambre soutenue. Cette teinte est due à la présence d’oxyde de fer et à une cuisson en atmosphère réductrice. L’absence de manganèse pourrait alors être expliquée par cette volonté de coloration et fausserait donc l’attribution de LUX 1 à la série tardive 3.3 (Vichy et al. 2003, p. 15). Mais il existe des parallèles pour le haut Moyen Âge et il ne s’agit donc pas là d’un cas isolé : un fragment jaune ambre a été mis au jour à Rezé, dans le chœur de la basilique paléochrétienne des Champs Saint-Martin (Loire-Atlantique), dont la fondation est datée du VIe siècle (Dumont, Pirault 2009). Deux fragments de couleur ambre ont, quant à eux, été découverts dans des remblais de sépulture à Serris les Ruelles (Seine-et-Marne) et sont attribués aux VIIe-VIIIe siècles (Gentili 2009).
Enfin, l’attribution de ce fragment au groupe 3.3 est en accord avec son contexte de découverte, daté entre la fin du VIIe et la fin du IXe siècle.
Enfin, la couleur bleu-vert du vitrail découvert à Salins-les-Bains (SAL 2) a été obtenue par adjonction de bronze au mélange. En effet, le cuivre (CuO) et l’étain (SnO₂) sont en proportion beaucoup plus élevée que dans les autres fragments : respectivement 3,37 % et 0,22 %. L’échantillon LUX 2 semble avoir lui aussi été coloré au bronze, mais dans une plus faible mesure, comme l’indiquent ses taux de cuivre (CuO) et d’étain (SnO₂) : respectivement 1 670 et 234 ppm. Des éléments présentant la même couleur bleu-vert que SAL 2 ont été retrouvés dans un habitat aristocratique et autour de deux bâtiments de la nécropole à Serris (Gentili 2009). Ils représentent le groupe le plus important des vitraux découverts sur le site et sont datés des VIIe-VIIIe siècles.

Conclusion

Les fragments de verre plat découverts à Pratz appartiennent donc au groupe de composition le plus important de l’Antiquité et du haut Moyen Âge : le groupe 3, dit des verres romains. Les caractéristiques géochimiques de la matière vitreuse ont permis d’identifier l’origine géographique de ce groupe sur la côte syropalestinienne. Les gisements de sable situés entre Tel Aviv et Sidon ont été successivement exploités par les ateliers primaires qui devaient fournir le Proche-Orient et l’Occident en verre brut. Bien que la composition des sables de cette région varie peu, on peut distinguer des séries à l’intérieur du groupe 3 grâce à des composants particuliers. Ainsi, le fragment PRA 3 a pu être rattaché au sous-groupe 3.2, daté entre la fin du V et le début du VIe siècle. Le verre plat PRA 1 et le vitrail PRA 2 n’ont pu être rapprochés d’une série connue mais se distinguent de l’élément PRA 3 par des composants mineurs et trace. La coloration au cobalt du fragment PRA 2 limite effectivement l’interprétation des analyses physicochimiques, car elle induit un apport non quantifiable en éléments mineurs et trace, lié au minerai de cobalt. Seule la technique du soufflage en manchon nous permet d’affirmer que les verres plats PRA 1 et PRA 2 sont postérieurs à la fin du IVe siècle.
La présence de trois fragments de verre plat – probablement utilisés comme éléments de vitrail –, sur un établissement rural marqué par un artisanat métallurgique, correspond donc davantage à une récupération de mobilier. Ces fragments proviennent vraisemblablement des monastères fondés au Vᵉ siècle, et situés à proximité de l’établissement de Pratz, ce que vient corroborer la datation du fragment PRA 3.
La comparaison des trois éléments de Pratz avec des verres plats découverts sur des sites régionaux, également occupés au haut Moyen Âge, a permis, d’une part, de préciser la datation de certains fragments et, d’autre part, d’émettre certaines hypothèses quant au choix de la matière brute utilisée pour les verres à vitre et les vitraux (tabl. 17). En effet, les fragments de verre plat sélectionnés pour cette étude forment un lot homogène, si l’on excepte l’échantillon plus précoce de Ménétru (MEN 1). Il s’agit d’un verre sodique au natron, fabriqué avec du sable issu de la côte syropalestinienne. Les analyses physicochimiques ont également révélé que la matière brute utilisée pour le verre plat est pauvre en fer, donc moins teintée, et qu’elle ne constitue pas le fruit d’un recyclage intensif. Il est donc probable qu’il s’agisse de la marque d’une sélection particulière de la part des verriers. Une telle observation a déjà été effectuée sur des verres à vitre carolingiens à Blois (Loir-et-Cher), bien qu’il s’agisse de verres potassiques : les verres plats contenaient moins de fer que la verrerie commune (Gratuze 2005).
Mais ce constat se limite à notre sélection et ne peut s'étendre aux verres plats de Nevers et de Mandeure, bien que trois fragments issus de ce dernier site soient syropalestiniens.

En effet, plusieurs types de verre sodique coexistent au haut Moyen Âge, avant l'adoption du fondant végétal. Outre le groupe HIMT 1 d'origine égyptienne et le groupe 3 des verres syropalestiniens, les analyses ont distingué un troisième ensemble, caractérisé par des teneurs en oxyde de fer (Fe₂O₃), en oxyde de titane (TiO₂) et en oxyde de manganèse (MnO) fortes mais inférieures à celle du groupe 1. Deux séries ont été individualisées à l'intérieur de ce groupe 2 à partir des taux en cuivre (CuO), en plomb (PbO) et en antimoine (Sb₂O₃), qui indiquent une pratique accentuée du recyclage. La série 2.1 est la plus ancienne et datée entre le milieu du VIe siècle et le milieu du VIIe siècle. La série 2.2 constitue l’un des derniers groupes de verre au natron et caractérise avant tout un mobilier du début de l’époque carolingienne (Foy et al. 2003).

6 des 15 verres à vitre et vitraux de Mandeure analysés appartiennent à la série 2.1 ou à une de ses variantes, tandis que deux fragments de verre plat de Nevers se rattachent à une variante du groupe 2.2.

Enfin, de façon générale, l’étude archéométrique du mobilier verrier du haut Moyen Âge révèle que les échanges commerciaux sur de longues distances ont perduré pendant plusieurs siècles après la chute de l’Empire romain. L’importation de verre brut en Occident doit en effet alimenter l’ensemble des ateliers de verriers jusqu’au IXe siècle. Ces ateliers dits secondaires sont assez bien connus pour l’Antiquité, mais aucune structure n’a été reconnue avec certitude pour le haut Moyen Âge. On identifie alors généralement la présence

<table>
<thead>
<tr>
<th>référence</th>
<th>site</th>
<th>datation du contexte archéologique</th>
<th>groupe de composition</th>
<th>datation du groupe physico-chimique</th>
<th>origine de la matière brute</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEN 1</td>
<td>Ménétru-le-Vignoble</td>
<td>Ve s.</td>
<td>groupe 1 (HIMT)</td>
<td>Ve s.</td>
<td>Égypte</td>
</tr>
<tr>
<td>PRA 1</td>
<td>Pratz</td>
<td>fin Ve-milieu VII s.</td>
<td>groupe 3</td>
<td>inconnue</td>
<td>côte syro-palestinienne</td>
</tr>
<tr>
<td>PRA 2</td>
<td>Pratz</td>
<td>fin Ve-milieu VII s.</td>
<td>groupe 3</td>
<td>inconnue</td>
<td>côte syro-palestinienne</td>
</tr>
<tr>
<td>LUX 2</td>
<td>Luxeuil-les-Bains</td>
<td>fin VII-fin IX s.</td>
<td>groupe 3</td>
<td>inconnue</td>
<td>côte syro-palestinienne</td>
</tr>
<tr>
<td>MEN 2</td>
<td>Ménétru-le-Vignoble</td>
<td>Ve-VI s.</td>
<td>groupe 3</td>
<td>inconnue</td>
<td>côte syro-palestinienne</td>
</tr>
<tr>
<td>PRA 3</td>
<td>Pratz</td>
<td>fin VI-milieu VII s.</td>
<td>groupe 3, série 2</td>
<td>fin VI-début VII s.</td>
<td>côte syro-palestinienne</td>
</tr>
<tr>
<td>MEN 3</td>
<td>Ménétru-le-Vignoble</td>
<td>Ve-VI s.</td>
<td>groupe 3, série 2</td>
<td>fin VI-début VII s.</td>
<td>côte syro-palestinienne</td>
</tr>
<tr>
<td>LUX 1</td>
<td>Luxeuil-les-Bains</td>
<td>fin VII-fin IX s.</td>
<td>groupe 3, série 3</td>
<td>fin VII-début VIII s.</td>
<td>côte syro-palestinienne</td>
</tr>
<tr>
<td>SAL 1</td>
<td>Salins-les-Bains</td>
<td>VI-VII s.</td>
<td>groupe 3, série 3</td>
<td>fin VII-début VIII s.</td>
<td>côte syro-palestinienne</td>
</tr>
<tr>
<td>SAL 2</td>
<td>Salins-les-Bains</td>
<td>VI-VIII s.</td>
<td>groupe 3, série 3</td>
<td>fin VII-début VIII s.</td>
<td>côte syro-palestinienne</td>
</tr>
</tbody>
</table>
d’un artisanat du verre par la découverte de creusets, de ratés et de déchets de fabrication. Trois sites ont livré des tessons de creuset en Franche-Comté: Luxeuil-les-Bains, Salins-les-Bains et Évans (Bonvalot 2003). Il s’agit de céramiques culinaires réemployées ou de céramiques spécialement créées pour la refonte de verre brut ou de groisil. La position en contexte perturbé de chacun de ces sites ne permet pas de reconnaître de structure d’atelier. Mais leur seule présence laisse supposer que l’artisanat du verre n’était pas seulement l’apanage de grandes régions productrices, comme le fut la Rhénanie à la fin de l’Antiquité. La production locale de verrerie, voire de verre à vitre, est donc tout à fait envisageable en Franche-Comté.

Les récipients en pierre ollaire

D. Billoin

La vaisselle en pierre ollaire (du latin olla: marmite) est restée relativement méconnue en France et a suscité peu d’intérêt jusqu’à ces dernières années. Elle désigne un groupe de roches métamorphiques, caractéristiques du massif alpin, utilisées dans la fabrication de récipients qui bénéficient d’une tradition artisanale de tournerie couvrant deux millénaires dans les régions de production (Paunier 1987). Aux périodes anciennes, on produit des pots et d’autres récipients, le plus souvent à l’aide d’un tour, mais aussi parfois simplement à l’aide d’un maillet et d’un ciseau (Lhémon 2009). À des périodes plus récentes (Moyen Âge à moderne), ce matériau est aussi utilisé pour la production de fourneaux pour le chauffage domestique.

L’établissement rural de Pratz est l’un des rares habitats de la région à fournir un lot relativement important de récipients en pierre ollaire, et reste une exception par rapport aux autres occupations étudiées jusqu’à présent en France. L’occasion nous est donc donnée d’engager des analyses pétrographiques sur les roches de ces récipients, afin de déterminer les lieux d’extraction et de fabrication et ainsi mettre en évidence les circuits commerciaux empruntés par cette vaisselle particulière.
Origine de la matière première

La pierre ollaire regroupe une gamme de 11 roches métamorphiques, de composition chimique et minéralogique très variable, utilisées en raison de leurs propriétés physiques particulières. Une classification de référence de ces roches a été établie et regroupe différents minéraux qui influent sur la dureté et la couleur (Mannoni et al. 1987). De teintes diverses – allant du vert clair au vert foncé et du gris clair au gris foncé –, parfois altérées par les conditions d'utilisation, la pierre ollaire est à la fois résistante, mais d’une faible dureté qui autorise un travail à l’aide d’outils en fer. Sa formation géologique lui confère une structure peu poreuse et des propriétés réfractaires, conduisant à l’accumulation de la chaleur et à un refroidissement lent, caractéristiques qui l’ont naturellement privilégiée pour la fabrication de récipients culinaires. Les gisements de pierre ollaire sont exclusivement présents dans la région centrale et occidentale des Alpes. Ils sont répartis parallèlement à la courbure de l’Arc alpin, depuis la Ligurie (région de Gênes), en passant par le Piémont, le Val d’Aoste, le Valais (au sud du Rhône principalement), le massif du mont Rose et le Val d’Ossola (Lombardie), le Tessin, les Grisons (au sud du Rhin principalement) et dans la Valteline (au nord de l’Adda). Environ 400 carrières ont été inventoriées par l’université de Lausanne (Manoni et al. 1987) et font l’objet d’analyses pétrographiques pour caractériser chaque zone d’extraction et déterminer ensuite, par comparaison, l’origine de la matière première des récipients archéologiques. L’extraction de la matière première est pratiquée à ciel ouvert, en front de taille ou en galerie souterraine. Plusieurs carrières de pierre ollaire viennent d’être découvertes dans les Alpes françaises (Queyras, Maurienne, Écrins), notamment celle de Bessans (Maurienne) qui a fourni des déchets de fabrication et des ratés de tournage attestant une production de récipients, mais sans aucune attribution chronologique (Lhémon 2002, p. 27). C’est également le cas des autres gisements de l’Arc alpin, où seule la grande carrière de Chiavenna (Italie du Nord) est datée par une inscription romaine gravée sur l’une de ses parois. Il est d’ailleurs probable qu’il s’agit de la carrière de la région de Côme mentionnée par Pline l’Ancien en 70 de notre ère. Parmi les impacts d’outils relevés dans les gisements, les traces d’extraction des blocs de roche permettent de reconnaître le type de production : le négatif d’ébauche grossièrement cylindrique destiné à la fabrication de récipients et les empreintes quadrangulaires, beaucoup plus récentes, signalant la production de fourneaux. De nombreux témoignages du travail de la pierre ollaire sont signalés par des déchets de fabrication spécifiques à l’emploi du tour, mais aucun atelier n’est documenté à ce jour par l’archéologie. Seuls les rejets d’un centre de production, constitué de couches de débitage et de ratés de tournage, ont fait l’objet d’une fouille à Furi, au-dessus de Zermatt (Valais, Suisse) et ont pu être datés par radiocarbone entre le 16e et le 17e siècle de notre ère (Paccolat 1998, p. 203). Un exemple ethnographique récent permet de pallier, dans une certaine mesure, les lacunes archéologiques en montrant le travail du dernier artisan tourneur en pierre ollaire, selon une technique traditionnelle du xixe siècle, délicate à transposer aux périodes plus anciennes (Lurati 1970).5

Les récipients

Hormis la fabrication de petits objets dès l’âge du Fer, les premiers récipients taillés à la main ne semblent pas apparaître avant la conquête romaine en Suisse (Paunier 1983, p. 164), qui s’achève en 15 avant notre ère avec la campagne des

Alpes. Cet artisanat se développe durant le Haut-Empire, grâce à l’introduction de la technique du tournage à une date encore indéterminée. La fabrication augmente à partir du IVe siècle, au point de concurrencer parfois la céramique dans les vallées alpines. La vaisselle en pierre ollaire se rencontre sur tout le Plateau suisse, le long du Rhin et du Rhône, ainsi qu’en Italie septentrionale. Cet essor de la production conduit à un développement commercial, avec l’exportation des récipients sur de longues distances jusqu’au haut Moyen Âge (Billoin 2004, p. 184 ; Haldiman, Steiner 1996, p. 149). La production décline à la période carolingienne, et l’usage des récipients se limite dès lors aux zones de production dans les vallées alpines.

Les 39 récipients dénombrés sur l’établissement de Pratz s’inscrivent dans ce marché. Un peu plus de 150 sites en Franche-Comté ont livré ce type de vaisselle, témoignant ainsi de l’engouement dont ce matériau a bénéficié entre l’Antiquité tardive et le haut Moyen Âge. Comme les autres catégories de mobilier, la vaisselle en pierre ollaire provient essentiellement des lambeaux de couches d’occupation des deux édifices et de leurs abords immédiats (tabl. 18 et 19). Ces récipients sont donc fragmentaires et relativement dispersés. Cependant, l’analyse spatiale révèle que le plus grand nombre de fragments est localisé à proximité des foyers artisanaux et domestiques, confirmant la fonction culinaire.
de cette vaisselle, tout comme les nombreux restes d’encroûtement de résidus carbonisés conservés à l’intérieur de nombreux récipients, les traces de suie et les impacts thermiques observés sur leurs parois.

Le répertoire des formes et les décors

Les contraintes techniques liées à l’utilisation du tour limitent l’éventail morphologique à des formes simples, cylindrique ou tronconique, à fond plat ou légèrement bombé, parmi lesquelles on distingue des pots et des gobelets d’après des critères dimensionnels arbitraires. Ce lot comprend 13 pots tronconiques, à parois légèrement évasées, 18 gobelets qui se distinguent des premiers récipients uniquement par une taille plus réduite, 1 pot cylindrique et 8 autres récipients trop fragmentaires pour en connaître la forme. Aucune forme basse, comme des écuelles et des plats ou encore des couvercles, n’est présente dans cet ensemble. Aucune différence n’apparaît dans la distribution des récipients entre l’atelier artisanal et l’édifice résidentiel (tabl. 18 et 19).

Le décor de ces récipients est également limité par la fabrication au tour et par le choix de la matière première. Des stries parallèles de tournage sont très souvent visibles, à l’intérieur comme à l’extérieur des récipients, plus ou moins marquées selon la dureté de la roche. Elles résultent généralement du travail au tour et correspondent aux marques des outils utilisés lors du façonnage de l’objet. Ces traces, visibles sur les parois laissées brutes de tournage, sont parfois effacées lors de l’étape suivante du polissage du récipient. Bien qu’elles ne constituent pas un décor à proprement parler, elles peuvent cependant participer à la gamme des décors en offrant au récipient une esthétique particulière, généralement associée aux sillons de tournage. Ces sillons sont intentionnels, sous la forme d’incisions parallèles, se combinant entre eux ou s’associant aux stries. D’une forme à l’autre, ces éléments présentent de nombreuses variantes par leur nombre et leur disposition sur la paroi externe des récipients, couvrant presque l’intégralité des formes (fig. 78, n° 1) ou n’apparaissant que ponctuellement et par petits groupes. Ces groupes de deux à trois sillons sont fréquemment localisés sous le bord du récipient, dans la partie supérieure de la panse formant parfois une sorte de bandeau et à proximité du fond (fig. 78, n° 1, 6 et 7). Un cordon, sorte de petit bourrelet en relief, est attesté sur l’un de ces récipients (fig. 79, n° 15).

Tabl. 19 : Inventaire des récipients en pierre ollaire du bâtiment résidentiel (D. Billoin).

<table>
<thead>
<tr>
<th>espace</th>
<th>panse</th>
<th>fond</th>
<th>bord</th>
<th>type de roche</th>
<th>chauffé</th>
<th>résidu</th>
<th>formes (en NMI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A: occupation (Us. 124)</td>
<td>22</td>
<td>8</td>
<td>5</td>
<td>roche verte à grains fins</td>
<td>x</td>
<td>x</td>
<td>pot tronconique</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td>roche verte à grains fins</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B: occupation (Us. 109)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>roche grise à grains fins</td>
<td></td>
<td></td>
<td>gobelet</td>
</tr>
<tr>
<td>et comblement du puit</td>
<td></td>
<td></td>
<td></td>
<td>roche grise à grains fins</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Us. 114)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C: occupation (Us. 113)</td>
<td>1</td>
<td>2</td>
<td></td>
<td>roche gris verte à grains fins</td>
<td>x</td>
<td></td>
<td>gobelet</td>
</tr>
<tr>
<td>extérieur: occupation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Us. 103, 105, 120, 126, 128)</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>roche verte à grains grossiers</td>
<td>x</td>
<td>x</td>
<td>pot indéterminé</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td>roche verte à grains grossier</td>
<td>x</td>
<td>x</td>
<td>pot indéterminé</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td>roche gris verte à grains fins</td>
<td></td>
<td></td>
<td>gobelet</td>
</tr>
<tr>
<td>annexe (Us. 122)</td>
<td>2</td>
<td></td>
<td></td>
<td>roche verte à grains fins</td>
<td>x</td>
<td>x</td>
<td>pot indéterminé</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>total général</td>
<td>30</td>
<td>11</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td>11</td>
</tr>
</tbody>
</table>

La fonction des récipients

Les qualités physiques de la pierre ollaire, en particulier ses propriétés réfractaires, privilégient naturellement une fonction culinaire. Les nombreuses traces de suie relevées sur les parois des récipients, les traces de chauffe et les encroûtements de matière carbonisée témoignent d’ailleurs de cette utilisation.

Fig. 78 : Les récipients en pierre ollaire (DAO D. Billoin).
Fig. 79: Les récipients en pierre ollaire (DAO D. Billoin).
Les analyses de ces résidus noirâtres carbonisés, conservés fréquemment dans le fond des pots, confirment également un usage domestique (cf. *infra Identification de matières grasses dans les récipients en pierre ollaire*). Cette utilisation culinaire est proposée sur l’habitat mérovingien de Develier-Courtételle, dans le Jura suisse, pour les mêmes raisons (Paratte Rana, Thierrin-Michael 2006, p. 118). Les résidus carbonisés relevés sur les formes les plus complètes révèlent qu’ils sont parfois présents jusqu’à la hauteur du bord, indiquant que certains récipients étaient donc remplis à ras bord. Des coulures sur les parois externes montrent aussi des débordements lors de la cuisson (fig. 79, n° 8 et 11 en grisé), correspondant à une ébullition mal maîtrisée du contenu. Le soin apporté à la finition de certains gobelets, offrant des registres décoratifs plus élaborés et des aspects de surfaces polies, laisse entrevoir une fonction différente de celle de pot à cuire. De taille plus modeste, ce type de récipient est rarement marqué par des traces de chauffe et appartiendrait davantage au service de la table et à la présentation. Par ailleurs, leur aspect particulier, proche de la vaisselle métallique, accréditerait cet usage (Billoin 2003b, p. 265).

Une trentaine de fragments ont permis de reconstituer partiellement un pot tronconique dont le fond présente cinq perforations, un sixième trou pratiqué sur la paroi du vase correspond à une réparation réalisée avec une agrafe en fer (fig. 79, n° 16). Ce récipient porte des traces de chauffe et contient un encroûtement carbonisé jusqu’à ras bord. La cuisson d’un produit dans un récipient percé renvoie à des exemples connus en céramique utilisés selon la technique du double-pot, appelée distillation *per descensum*. Cette technique, rencontrée au haut Moyen Âge surtout dans les pays slaves, au-dessus de l’Elbe, consiste à faire chauffer la matière première dans un récipient perforé, lui-même engagé dans un récipient plus grand, afin d’y recueillir le liquide produit. L’analyse de ce résidu organique n’a cependant pas permis de révéler une composition chimique en relation avec une activité artisanale particulière (cf. *infra Identification des matières grasses animales dans les récipients en pierre ollaire*).
La chronologie

Le répertoire restreint des récipients en pierre ollaire affiche une certaine standardisation réduisant toute approche typochronologique, en raison de la technique du tournage et de la nature conservatrice de cette industrie (Paunier 1987, p. 161). Sauf à attendre la découverte de particularités éventuelles ressortant de l'étude de grandes séries des sites de production qui reste cependant à réaliser, cette catégorie de vaisselle offre donc un médiocre indicateur chronologique. En France, elle est importée du début du ve à la fin du vie siècle, peut-être légèrement plus précocement dans le Sud-Est (Billoin 2004). Ce sont donc les environnements archéologiques qui permettent de dater l'utilisation de ces récipients. Sur l'établissement de Pratz, les éléments de datation offerts par le mobilier, couplés aux datations radiocarbone, situent ces récipients au milieu du viie siècle. Autant par les groupes de roches utilisées que par les formes représentées, ce corpus est...

Les roches utilisées

Trois groupes, constitués à partir d’un examen visuel des roches, se distinguent d’après la classification de référence des pierres ollaires (Mannoni et al. 1987), la plus complète à ce jour et utilisée comme base de comparaison et d’attribution des provenances. On note une forte prédominance des chloritoschistes à grains grossiers (75 % de roches vertes à grain grossier), suivis par des chloritoschistes à grain fin (23 % de roches vertes ou gris vertes à grain fin) et très peu de roches à talc (moins de 2 % de roches grises à grain fin). La prédominance des chloritoschistes à grain grossier est confirmée par l’observation macroscopique complémentaire (cf. infra L’analyse pétrographique des pierres ollaires), ainsi que par la présence de chloritoschistes à grain fin. La présence de roche à talc n’est pas formellement attestée.

L’analyse pétrographique des pierres ollaires

I. Katona-Serneels, V. Serneels

Du point de vue pétrographique, les pierres ollaires sont assez variées et leur classification est complexe. On utilise généralement comme base les propositions de Mannoni, Pfeifer et Serneels (1987), ainsi que d’autres (Santarrosa 2001; Castello, De Leo 2007; Mannoni et al. 1987; Pfeifer, Serneels 1986; Mannoni, Messiga 1980). Les pierres ollaires sont des roches métamorphiques qui se sont formées à partir de roches ultrabasiques pendant l’orogenèse alpine. Les gisements se trouvent donc seulement dans certaines parties de la chaîne des Alpes. Deux grands districts ont été très actifs, dès l’époque romaine. D’une part, dans la partie ouest, on trouve de nombreuses exploitations dans la région comprise entre Pont Saint-Martin (Val d’Aoste, Italie) et Brig (Valais, Suisse), ainsi que dans le Val de Champorcher, le Val de Gressonney, le Val d’Ayas, le Val Tournenche, le Mattertal (Zermatt) et le Saastal. Les roches utilisées dans ce secteur sont principalement des chloritoschistes. D’autre part, dans la partie est de la chaîne alpine, le grand gisement de Chiavenna (Sondrio, Italie) a joué un rôle considérable. D’autres carrières ont sans doute aussi été actives précoce-ment dans le Val Bregaglia et le Val Malenco. Dans ce secteur, ce sont surtout
des roches à talc et des carbonates qui ont été utilisés. Il faut encore mentionner les nombreux gisements dans l'ouest du canton des Grisons et au Tessin qui ont aussi fait l'objet d'une exploitation ancienne. On trouve dans cette région une variété de roches, à talc, à chlorite et à amphiboles (Pfeifer, Serneels 1986).

Les recherches actuelles ont pour but d'identifier avec plus de précision les centres de production et de comprendre les réseaux d'échange de ces objets aux différentes époques. Pour atteindre cet objectif, il est nécessaire de produire des descriptions détaillées des roches, des gisements et des ateliers, mais aussi des objets exportés en dehors de la zone de production.

L'étude pétrographique

L'étude pétrographique au microscope polarisant porte sur neuf échantillons de pierre ollaire de Pratz (Ildiko Katona-Serneels et Vincent Serneels, Fribourg). Des analyses ponctuelles à la microsonde ont été effectuées sur trois d'entre eux (Michel Fialin, Paris).

Toutes les roches étudiées sont des chloritoschistes. Les roches à talc sont totalement absentes de l'échantillonnage. La majorité (huit spécimens) sont des chloritoschistes à grain grossier (groupe G de la classification pétrographique MPS). Le dernier échantillon appartient au groupe F, celui des chloritoschistes à grain fin.

Descriptions pétrographiques des échantillons étudiés

Les estimations modales et les principales observations texturales sont présentées sur le tableau récapitulatif (tabl. 20). Les lames sont présentées grandeur nature (les lames minces mesurent 4 cm de long) sur la figure VI. Le cas échéant, des vues microscopiques en lumière naturelle (LN) ou en lumière polarisée (LP) illustrent la texture et les principaux minéraux (fig. VII).

L'échantillon Pratz 1 est constitué d'une matrice rougeâtre très sombre qui occupe environ 40% de la surface et englobe de nombreux grains de grenat.
Cette matrice rougeâtre résulte de la transformation de la chlorite sous l’effet d’un fort impact thermique. On observe la présence de nombreux grains opaques allongés (ilménite ?) et d’un petit nombre de petits grains d’épidote dispersés dans la matrice. Localement, du quartz et/ou du feldspath apparaissent en remplissage interstitiel entre les plaquettes de chlorite.

L’échantillon Pratz 2 est très proche du précédent avec une plus forte proportion de grenat.

Dans la lame Pratz 3, la chlorite possède des teintes de birefringence anormales et violettes. La roche contient une forte proportion de grains de grande taille d’autres minéraux: amphibole, épidote, quartz et/ou feldspath et minéraux opaques. En revanche, le grenat et le chloritoïde sont absents.

On observe dans la lame Pratz 4 une forte déformation de la roche qui s’exprime par une schistosité replissée. La birefringence de cette chlorite est anormale avec des teintes brunes. La roche contient un unique grand cristal de chloritoïde, centimétrique, et quelques grains beaucoup plus petits de grenat et d’épidote.

On note une proportion notable de minéraux opaques, en forme de baguette allongée, ainsi que la présence d’une petite quantité de quartz et/ou de feldspath interstitiel.

La roche Pratz 5 est principalement constituée par de la chlorite, qui possède des teintes anormales brunes et la même association de minéraux que Pratz 4. Les proportions sont légèrement différentes et on observe quelques paillettes de mica blanc.

La roche Pratz 6 est principalement constituée de chlorite, avec des teintes gris bleuté. Elle entoure des cristaux de grenat assez gros. On observe la présence d’une faible proportion de minéraux opaques et de quelques rares et petits grains d’épidote (grains d’épidote) dispersés dans la matrice.

Dans la lame Pratz 7, la chlorite possède des teintes de birefringence brunes et la même association minéralogique que les lames 4 et 5. Le grenat est riche en fer et appartient à la variété Almandin. La chlorite contient une forte proportion de fer et d’aluminium et une faible quantité de magnésium (SiO2 : 24 %; Al2O3 : 19 %; FeO : 24 %; MgO : 13 %). La pièce a subi un impact thermique important et, dans une partie de la lame, la chlorite présente une couleur rouge anormale.

Dans la lame Pratz 8, la chlorite est violette et on trouve les mêmes minéraux que dans la lame 3, en particulier l’amphibole bleue (sodique). La chlorite contient une forte proportion de fer et d’aluminium et une faible quantité de magnésium (SiO2 : 24 %; Al2O3 : 19 %; FeO : 28 %; MgO : 12 %). La roche contient des grains de feldspath sodique (albite).

L’aspect et la structure de la roche Pratz 9 sont complètement différents des échantillons décrits précédemment. Cette roche est un chloritoschiste à grain fin. La chlorite apparaît sous forme de grains en plaquettes de très petite taille qui donnent l’image d’un treillis. La birefringence de la chlorite est normale, avec des teintes grises. Elle contient une forte proportion de magnésium et d’aluminium mais peu de fer (SiO2 : 30 %; Al2O3 : 17 %; FeO : 3 %; MgO : 21-26 %). Les minéraux opaques sont peu abondants. Il s’agit d’une magnétite, légèrement chromifère et manganésifère.

Les chloritoschistes à grain grossier du groupe G

Les roches du groupe G ne sont pas signalées en dehors du Val d’Aoste (Mannoni et al. 1987; Castello, De Leo 2007). En revanche, elles sont présentées dans plusieurs secteurs de cette zone, en particulier le Val Tournenche, le Val d’Ayas et le Val de Gressoney, ainsi que dans les vallons du versant sud de la vallée de la
Doire Baltée entre Aoste et Châtillon (fig. 81). On les trouve aussi plus au sud, dans les gisements entre les vallons de Champorcher et de Champdepraz. Les prospections ne sont pas complètes et les données pétrographiques ne sont pas publiées de manière extensive, il n’est donc pas formellement possible d’exclure d’autres parties du Val d’Aoste, mais cela semble vraiment peu probable. Jusqu’à maintenant, ces roches à grain grossier n’ont pas été signalées dans les affleurements en Valais (zone de Zermatt, limitrophe) ou en Piémont (zone du haut Val Sesia, également limitrophe). Ces roches montrent des caractères variables au niveau des teintes de biréfringence des chlorites (reflétant la composition chimique de celles-ci) et dans les minéraux accessoires (opaques, grenats, épidotes, amphiboles et chloritoïdes).

Les lames Pratz 4, 5 et 7 forment un premier sous-groupe (fig. VI et VII), avec une chlorite brune en LP, des opaques, du chloritoïde et des grenats. Les spécimens se ressemblent beaucoup sans être identiques. De telles roches sont signalées dans le haut Val d’Ayas et dans le haut Val Tournenche où des exploitations sont attestées. Ces roches sont aussi mentionnées plus au sud, de l’autre côté de la Doire Baltée, dans le vallon de Valmerianaz, une localité où des traces de tournage ont été identifiées mais qui semble surtout avoir abrité la fabrication de meules pour les moulins. Pour cette dernière localité, on signale la présence de sphène (titanite), en association avec les grenats et le chloritoïde. Le sphène n’a pas été observé dans les lames de Pratz, ce qui rend peu probable l’attribution à cette localité.

La lame Pratz 6 se rattache à un second sous-groupe (fig. VI et VII) avec une chlorite violette en LP, des opaques et du grenat. Cet assemblage minéralogique moins complexe est décrit dans les principaux secteurs du Val d’Aoste, sans que les données ne permettent de proposer des distinctions plus précises. On ne peut pas non plus exclure le Val di Lanzo, plus au sud.
Les deux lames Pratz 3 et 8 appartiennent au troisième sous-groupe (fig. VI et VII), avec une chlorite cuivrée, des opaques et des amphiboles sodiques. L’assemblage est assez complexe et n’est décrit que dans quelques localités, principalement dans le secteur Val d’Ayas/Val Tournenche/Val de Gressoney. Des travaux complémentaires sur ces roches à amphiboles sont nécessaires pour élaborer les critères permettant de les distinguer des roches à amphiboles communes dans le nord-ouest du Tessin.

Dans les autres échantillons de chloritoschistes à amphiboles de la collection de Fribourg, on trouve des roches qui ressemblent à celles de Pratz mais ne sont jamais identiques.

Les chloritoschistes à grain fin du groupe F

Les chloritoschistes à grain fins présentent des variations minéralogiques sur la base de la présence et/ou des proportions des minéraux accessoires. On signale la présence de divers minéraux opaques (magnétite, ilmétite), de sphène (titanite) associé ou non au rutile, d’épidote (incolore ou colorée), de quartz et de feldspaths et surtout de grenat.

La classification en lithotypes n’est pas encore suffisamment bien établie. Des chloritoschistes à grain fin ont fait l’objet d’une exploitation importante dans la partie ouest des Alpes, principalement le Valais (zone de Zermatt) et le Val d’Aoste (Val Tournenche, Val d’Ayas, Val de Champorcher, etc.).

L’échantillon de Pratz 9 montre une paragenèse très simple (chlorite grise et magnétite). Ces caractères sont peu distinctifs. L’analyse de la magnétite, qui contient un peu de chrome et de manganèse, pourra constituer un argument de caractérisation fine, lorsque des références suffisantes auront été établies.

Les traces de chauffage extrême

Les échantillons 1 et 2 présentent une couleur très rouge, résultat d’une transformation de la chlorite sous l’effet d’un chauffage intense (fig. VI). Les pièces 6 et 7 montrent les mêmes caractéristiques, mais seulement localement. Nous ne disposons pas encore de données permettant d’estimer quantitativement la température atteinte mais, par comparaison avec d’autres cas un peu mieux connus, il faut envisager des températures de l’ordre de 1 000 °C ou plus, c’est-à-dire dans la gamme des pyrotechnologies de la métallurgie des alliages à base de cuivre ou du travail du verre. En plus de la transformation minéralogique, on observe aussi le développement de fissures dans la roche à la suite d’une perte de volume des constituants par déshydratation de la chlorite.

Dans trois échantillons (fig. VI, n° 1, 2 et 6), on observe, dans le remplissage de ces fissures, la présence de petits grains d’un minéral légèrement coloré en bleu et possédant un relief important et une forte biréfringence (fig. VIII). Malheureusement, les conditions d’observation ne permettent pas d’identifier de manière précise le minéral en question. On peut penser à de l’azurite (carbonate de cuivre). La présence de cette substance inhabituelle pourrait venir confirmer l’idée de l’utilisation de certains récipients en pierre ollaire dans le cadre d’une pyrotechnologie (métal, verre). L’utilisation de récipients en pierre ollaire dans un cadre artisanal a déjà été constatée, en particulier sur quelques sites du haut Moyen Âge (Mustair GR, San Vincenzo al Volturno, Italie).
Conclusion

Les chloritoschistes à grain fin du groupe F sont présents dans toute la zone du Val d’Aoste ainsi que plus au nord, dans le Haut-Valais (secteur de Zermatt). L’état de la recherche ne permet pas encore de faire des différences au sein de ce secteur géographique.

De manière générale, tout l’assemblage de Pratz semble fortement dominé par les produits d’une seule région de production: le haut Val d’Ayas et les aires adjacentes (fig. 81).

Identification de matières grasses animales dans des récipients en pierre ollaire

M. Regert, J. Langlois

Parmi les récipients en pierre ollaire de Pratz, un certain nombre présentent des encroûtements noirs, visiblement carbonisés, à leur surface. Ce type de résidus témoigne généralement du contenu des récipients (Regert 2007a et b; Regert et al. 2008a). La détermination de leur nature et de leur degré d’altération ou de transformation permet d’obtenir des informations sur la fonction et le mode d’utilisation des récipients, mais aussi d’appréhender les ressources naturelles exploitées sur le site. D’un point de vue méthodologique, l’identification de cette gamme de vestiges, qui ne contiennent aucun élément pouvant être étudié à partir de leur morphologie (graines, pollens, ossements, etc.), repose sur la mise en œuvre de méthodes relevant de la chimie organique analytique (Regert et al. 2006a et b) faisant notamment appel à des techniques séparatives (chromatographie en phase gazeuse) et structurales (spectrométrie de masse).

Jusqu’à présent, très peu de travaux se sont intéressés au contenu d’éléments de vaisselle médiévale. On peut citer l’identification d’un mélange de cire d’abeille et de matières grasses animales sur un site britannique (Charters et al. 1995), celle de matières grasses animales sur un site mérovingien suisse (Regert, Decavallas 2000) ou encore, mais dans un tout autre contexte, la détermination de résines sur des tessons yéménites (Regert et al. 2008b et c). Un plus grand nombre de résultats est disponible sur le contenu organique de poteries néolithiques ou des âges des Métaux. Les recherches focalisées sur la gamme de famille chimique qui se conserve le mieux au cours du temps, à savoir les lipides, ont permis de déterminer un large éventail de matériaux, qu’il s’agisse de matières grasses animales sous-cutanées (Evershed et al. 1997a; Dudd et al. 1999; Regert et al. 1999 et 2001a; Evershed et al. 2002; Regert et al. 2003a), de produits laitiers (Dudd, Evershed 1998; Copley et al. 2003 et 2005a à d; Mirabaud et al. 2007; Evershed et al. 2008), de graisses de poissons (Copley et al. 2004;
Hansel et al. 2004 ; Craig et al. 2007), de cire d’abeille (Heron et al. 1994 ; Evershed et al. 1997b; Regert et al. 2001b; Garnier et al. 2002; Evershed et al. 2003; Regert 2008) ou encore d’huiles végétales (Copley et al. 2001). Des adhésifs à base de brai de bouleau ou de résines ont également été identifiés (Urem-Kotsou et al. 2002; Regert et al. 2003b; Regert 2004). Il est à noter que l’ensemble de ces travaux est lié à l’étude de résidus organiques conservés dans des récipients en céramique et qu’il n’existe pas, tout au moins à notre connaissance, de recherches réalisées sur des matériaux organiques conservés sur de la vaisselle en pierre.

À Pratz, la plupart des récipients en pierre ollaire sont considérés comme relevant d’une fonction culinaire en raison, d’une part, des traces de chauffe observées à la base des récipients et, d’autre part, de la présence de dépôts organiques recouvrant l’intérieur. Seul un récipient tronconique, reconstitué à partir d’une trentaine de fragments et présentant une base perforée, est envisagé pouvoir relever d’activités artisanales et non domestiques. En effet, ce type de récipient perforé est connu pour la fabrication de brais ou goudrons végétaux par traitement thermique de bois ou d’écorce. Ce procédé de production d’un goudron végétal par la technique du double-pot est connu dans la littérature antique sous le nom de distillation *per descensum* (Kurzweil, Todtenhaupt 1990; Thomas 1998; Regert, Vacher 2001; Regert et al. 2006c).

Afin d’éprouver ces hypothèses reposant sur la morphologie des récipients, leur caractère perforé, les traces de chauffe et la localisation de résidus carbonisés à leur surface, il a été décidé de procéder à l’identification des dépôts organiques visibles à la surface des récipients par chromatographie en phase gazeuse (CPG) et couplage de la CPG à la spectrométrie de masse (CPG/SM), après avoir observé les échantillons à différentes échelles et leur avoir fait subir les traitements chimiques nécessaires à leur analyse.

Corpus d’échantillons étudiés, mode de prélèvement et premières observations

Une série de 12 échantillons provenant de cinq récipients a été étudiée. Le tableau 21 détaille la provenance et les caractéristiques de ces échantillons. Lorsque cela était possible, plusieurs prélèvements ont été réalisés sur un même

<table>
<thead>
<tr>
<th>référence labo</th>
<th>référence archéo</th>
<th>zone de prélèvement</th>
<th>quantité prélevée (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MR1000</td>
<td>n° 6, Us.124</td>
<td>dans une rainure qui fait le tour du récipient</td>
<td>311</td>
</tr>
<tr>
<td>MR1001</td>
<td>n° 6, Us.124</td>
<td>sur un fragment de la paroi au fond du récipient</td>
<td>85</td>
</tr>
<tr>
<td>MR1003</td>
<td>n° 10, Us.21</td>
<td>à la jonction de la panse et du fond</td>
<td>356</td>
</tr>
<tr>
<td>MR1004</td>
<td>n° 10, Us.21</td>
<td>sur la panse à 10 cm du bord du récipient</td>
<td>302</td>
</tr>
<tr>
<td>MR1005</td>
<td>n° 10, Us.21</td>
<td>sur une partie médiane de la panse du récipient</td>
<td>236</td>
</tr>
<tr>
<td>MR1006</td>
<td>n° 10, Us.21</td>
<td>sur un bord de la face interne du récipient</td>
<td>129</td>
</tr>
<tr>
<td>MR1007</td>
<td>Us.31 (récipient dont on n’a qu’une partie du fond)</td>
<td>résidu très épais (5 à 6 mm) sur le bord du fond du récipient</td>
<td>288</td>
</tr>
<tr>
<td>MR1008</td>
<td>Us.31 (récipient dont on n’a qu’une partie du fond)</td>
<td>résidu très épais (5 à 6 mm) sur le bord du fond du récipient</td>
<td>291</td>
</tr>
<tr>
<td>MR1009</td>
<td>Us.31 (récipient dont on n’a qu’une partie du fond)</td>
<td>résidu très épais (5 à 6 mm) sur le bord du fond du récipient</td>
<td>362</td>
</tr>
<tr>
<td>MR1010</td>
<td>Us.31 (récipient dont on n’a qu’une partie du fond)</td>
<td>résidu très épais (5 à 6 mm) sur le bord du fond du récipient</td>
<td>435</td>
</tr>
<tr>
<td>MR1011</td>
<td>Us.109</td>
<td>résidu de « coulure » sur la face externe du récipient</td>
<td>129</td>
</tr>
<tr>
<td>MR1014</td>
<td>n° 14, Us.21</td>
<td>à la base de la panse sur les trois derniers cm de la panse</td>
<td>142</td>
</tr>
</tbody>
</table>

Tabl. 21 : Liste des échantillons prélevés et étudiés (M. Regert).
récipient, afin d’évaluer l’homogénéité de la composition moléculaire des résidus et de déterminer les teneurs en lipides en différents endroits du vase (Charters et al. 1993).
Les résidus observés sur les récipients en pierre ollaire ont été prélevés à l’aide d’une lame de scalpel stérile afin d’éviter toute contamination extérieure. Les échantillons ont ensuite été conditionnés dans des piluliers de verre, contenant inertes vis-à-vis de la matière organique, permettant d’éviter tout phénomène de contamination au cours du stockage des résidus.
L’observation de ces vestiges sous loupe binoculaire a montré qu’ils présentaient tous le même aspect amorphe. Il s’agit de résidus homogènes noir à marron foncé. Aucun élément dont la morphologie aurait permis d’identifier la nature des dépôts n’a été décelé.

Protocole de préparation et d’analyse des échantillons

Les échantillons ont été préparés et analysés suivant des protocoles bien décrits dans la littérature et utilisés habituellement par plusieurs équipes (Heron et al. 1991; Charters et al. 1995; Regert et al. 1999 et 2001a; Mirabaud et al. 2007).

Les échantillons ont été broyés dans un mortier en agate. Après l’ajout de 20 µl d’une solution de n-tétratriacontane (standard interne, Sigma-Aldrich, référence 28,726-1) de concentration 1 mg.ml⁻¹ dans du cyclohexane (grade HPLC), la fraction lipidique a été extraite par 5 ml d’un mélange chloroforme/méthanol (2:1, v/v, grade HPLC) deux fois pendant 15 min aux ultrasons. Les solutions ont alors été centrifugées (20 min, 2000 tours/min) et les surnageants ont été récupérés et évaporés (40°C sous courant d’azote) dans un tube en verre de 4 ml. Les échantillons ont alors été repris par un volume de 300 à 500 ml d’un mélange chloroforme/méthanol (2:1, v/v grade HPLC).

Une fraction de 100 µl de solution a ensuite été prélevée et transférée dans un tube de verre. Après évaporation à sec du solvant sous un courant d’azote, la dérivation par triméthylsilylation (TMS) a été effectuée avec 50 µl de BSTFA (bis-(trimethylsilyl) trifluoroacétamidé avec 1 % trimethylchlorosilane ajouté, Sigma, T6381). La réaction a eu lieu dans un petit tube de verre fermé, pendant 30 minutes à une température de 70°C. Le réactif en excès a été évaporé à sec sous azote. Puis l’échantillon a été repris dans 50 µl cyclohexane (grade HPLC) avant analyse en chromatographie en phase gazeuse (injection de 1 µl).

Analyse en chromatographie en phase gazeuse (CPG)
Les analyses en chromatographie en phase gazeuse ont été réalisées sur un chromatographe HP6890 équipé d’un injecteur on-column (donc la température suit celle du four: mode Track Oven), d’une colonne Chrompack CP Sil 5 CB LB/MS (longueur: 15 m (+ 1 m de précolonne); diamètre interne: 0,32 mm; épaisseur de phase: 0,1 mm), et d’un détecteur à ionisation de flamme porté à une température de 350°C. Le flux du gaz vecteur (hélium) en tête de colonne a été programmé comme suit: 2 ml.min⁻¹ pendant 17 min puis 4 ml.min⁻¹ (rampe de 1 ml.min⁻²) pendant 5 min puis 6 ml.min⁻¹ (rampe de 1 ml.min⁻²) pendant 15 min.

Le four a suivi la programmation en température suivante: 1 min à 50°C; 10°C.min⁻¹ jusqu’à 350°C; 10 min à 350°C.
Analyse en chromatographie en phase gazeuse couplée à la spectrométrie de masse (CPG/SM)

Le chromatographe utilisé est un HP5890 équipé d’un injecteur split/splitless utilisé en mode splitless (dont la température est de 320°C et dont la vanne de split s’ouvre à partir de 2 min), d’une colonne Chrompack CP Sil 5 CB LB/MS (longueur: 15 m [+ 1 m de précolonne]; diamètre interne: 0,25 mm; épaisseur de phase: 0,1 mm). La pression du gaz vecteur (hélium) en tête de colonne a été programmée comme suit: 1 min à 5 psi; 0,39 psi.min⁻¹ de 5 à 16,80 psi; 10 min à 16,80 psi.

La programmation en température utilisée pour le four du chromatographe était la même que celle utilisée en CPG. La température de la ligne de transfert a été fixée à 340°C.

Les analyses ont été réalisées sur un spectromètre de masse GCQ Finnigan équipé d’une trappe ionique.

Le spectromètre de masse a été utilisé dans les conditions suivantes: scan time de 0,78 s; ion time maximum de 25 ms en mode full scan de 50 à 950 u.m.a. L’analyse a été réalisée en impact électronique en détection positive avec une énergie de 70 eV. La température de la source du spectromètre de masse était fixée à 180°C.

Résultats obtenus et discussion

Tous les échantillons analysés contenaient des constituants lipidiques en quantité variable, de 24 à 1 148 mg.g⁻¹ avec une concentration moyenne de 342 mg.g⁻¹ (tabl. 22), ce qui correspond à une quantité non négligeable de lipides conservés. Des variations de concentration sont observées pour tous les récipients sur lesquels plusieurs prélèvements ont été réalisés. En particulier, le récipient n° 6, Us.21, présente de grandes variations de concentration qu’il est possible de corrêler à la position des prélèvements sur le vase (fig. 82).

Cette répartition peut être attribuée au mode d’utilisation des récipients ayant contenu des matières grasses. Lors de la cuisson, les matières lipidiques se concentrent en effet à la surface de la préparation, ce qui explique que la concentration soit maximale au sommet du récipient et relativement faible à sa base (Charters et al. 1993).

La quasi-totalité des échantillons s’est révélée riche en acides gras saturés, très répandus dans la nature en particulier dans les matières grasses. Il s’agit des

<table>
<thead>
<tr>
<th>réf. labo.</th>
<th>conc. en lipides (mg/g)</th>
<th>rapport C₁₆₀/C₁₈₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>MR1000</td>
<td>399</td>
<td>1,1</td>
</tr>
<tr>
<td>MR1001</td>
<td>811</td>
<td>0,9</td>
</tr>
<tr>
<td>MR1003</td>
<td>33</td>
<td>nd</td>
</tr>
<tr>
<td>MR1004</td>
<td>125</td>
<td>0,9</td>
</tr>
<tr>
<td>MR1005</td>
<td>24</td>
<td>1</td>
</tr>
<tr>
<td>MR1006</td>
<td>1 148</td>
<td>0,8</td>
</tr>
<tr>
<td>MR1007</td>
<td>81</td>
<td>0,6</td>
</tr>
<tr>
<td>MR1008</td>
<td>96</td>
<td>0,6</td>
</tr>
<tr>
<td>MR1009</td>
<td>45</td>
<td>0,8</td>
</tr>
<tr>
<td>MR1010</td>
<td>82</td>
<td>0,9</td>
</tr>
<tr>
<td>MR1011</td>
<td>291</td>
<td>1,1</td>
</tr>
<tr>
<td>MR1014</td>
<td>968</td>
<td>1</td>
</tr>
</tbody>
</table>

Fig. 82 : Concentration en lipides du récipient n° 6 (Us.21) en fonction de la position sur le récipient.
Fig. 83 : Chromatogramme partiel de l'échantillon MR1001. L’alcane linéaire n-C_{34} correspond au standard interne ajouté à l’échantillon pour la quantification de l’extrait lipidique total. Les nombres indiqués au-dessus des pics de di- et triglycérides correspondent à la somme des atomes de carbone présents dans les acides gras liés au glycérol.

Fig. 84 : Pourcentages relatifs des différents diglycérides dans les échantillons MR1000, MR1001 et MR1006.

Fig. 85 : Pourcentages relatifs des différents triglycérides dans les échantillons MR1000, MR1001 et MR1006.
acides palmitique (C16:0) et stéarique (C18:0). Bien que la présence de ces composés soit difficile à relier à une origine naturelle en raison de leur ubiquité, leur rapport compris entre 0,6 et 1,1 est clairement en faveur de matières grasses animales.
En outre, dans trois échantillons issus de deux récipients (MR1000, MR1001 et MR1006), les biomarqueurs originels des matières grasses – à savoir les triglycérides, accompagnés de certains de leurs produits d’hydrolyse, les diglycérides – ont été détectés (fig. 83, 84 et 85). La distribution des triglycérides, de C48 à C54, avec un maximum à C52, est compatible avec la présence de matières grasses sous-cutanées, sans qu’il soit possible de préciser l’espèce dont elles proviennent (Dudd et al. 1999 ; Mukherjee et al. 2007). Les traces de cholestérol ont également été décelées en CPG/SM dans l’échantillon MR1010. Cela tend à confirmer l’origine animale des matières grasses détectées.

Conclusion

D’après les résultats obtenus à l’issue de ces analyses, il s’avère que l’ensemble des échantillons dans lesquels des constituants lipidiques sont conservés est constitué de matières grasses animales dégradées. Dans la plupart des échantillons, seuls les acides gras majoritaires, issus de l’hydrolyse des triglycérides originels des matières grasses, ont été identifiés. Mais, dans trois échantillons provenant de deux récipients différents, les triglycérides étaient conservés, de même que les diglycérides issus de leur hydrolyse partielle et les acides gras. Pour ces trois cas, la distribution en triglycérides correspond à celle de matières grasses animales sous-cutanées, voire de produits laitiers extrêmement dégradés. Dans tous les cas, les récipients dont les résidus carbonisés ont été analysés peuvent donc être considérés comme des récipients culinaires ayant servi à réaliser et/ou consommer des préparations à base de viande ou de matières grasses animales. L’altération de ces substances, vraisemblablement liée à une utilisation intensive des récipients en pierre ollaire portés à des températures élevées ou utilisés sur de longues plages de temps, ne permet pas de fournir plus de précisions quant à la nature des matières grasses animales détectées.
Il est à noter que l’ensemble des vases étudiés a livré des matières grasses animales, y compris le récipient percé, dont on aurait pu penser qu’il était lié à la production d’un goudron végétal. Cependant, seul le résidu carbonisé à la surface de cet ustensile a été analysé et aucune analyse n’a été entreprise pour essayer d’extraire de la matière qui aurait été piégée dans la pierre elle-même. Les analyses réalisées fournissent ainsi des informations sur la ou les dernières utilisations de l’objet, puisque les encroûtements des premières utilisations ont pu être enlevés au fur et à mesure. On ne peut donc exclure une première utilisation avec une fonction spécifique, puis une seconde liée aux activités culinaires. Cela étant, cette hypothèse demeure peu probable, car, d’une part, il est rare qu’un objet lié à une activité technique spécifique soit réutilisé dans un contexte culinaire et, d’autre part, des biomarqueurs de ces premières utilisations potentielles auraient dû être piégés dans les encroûtements carbonisés, même en faible quantité.
Ces résultats tendent donc à montrer que l’ensemble des récipients étudiés avait une fonction culinaire liée à la préparation de mets contenant des viandes et des graisses. Il s’agit donc de céramiques domestiques pour lesquelles aucune fonction artisanale, par exemple liée à la production d’un goudron végétal dans le cas du récipient percé, n’a pu être mise en évidence.
Le mobilier métallique

D. Billoin

L’importance numérique de mobilier s’explique, dans une certaine mesure, par la méthode de fouille employée et par les caractéristiques propres au site, en particulier sa vocation au travail métallurgique. Le décompte de ces objets porte sur l’intégralité du mobilier découvert sur les deux édifices. Il provient de toutes les unités stratigraphiques rencontrées sur le site (sols, niveaux d’abandon, comblements). Une partie des objets a bénéficié d’une restauration engagée par le Musée d’archéologie du Jura afin de faciliter leur identification. L’attribution de chacun d’entre eux aux diverses catégories fonctionnelles a été réalisée avec un paléométallurgiste, afin d’identifier les éléments associés à la métallurgie du fer et d’autres métaux (cf. supra chapitre 5). Déchets et produits correspondant à la mise en forme des objets ont été isolés et sont présentés dans l’étude concernant les activités métallurgiques. Cette dissociation s’avère naturellement délicate et n’est pas sans danger en ce qui concerne les produits finis dont une part peut être rattachée à ces activités artisanales. De même, les objets fragmentaires ou mal conservés sont difficiles à interpréter avec précision et rendent ardue leur identification ainsi que la distinction entre objets de la vie quotidienne et ustensiles résultant des activités métallurgiques. Ce constat vaut également pour les catégories fonctionnelles proposées, ces objets ne se catégorisent pas facilement et ont un usage, le plus souvent, assez polyvalent. Enfin, l’absence d’évolution typologique de ces ustensiles – leur morphologie étant adaptée à l’usage – rend leur datation problématique.

Les catégories d’objets

Les accessoires vestimentaires

Peu fréquents sur les habitats, les pièces d’habillement et de parure trouvent des comparaisons dans le domaine funéraire et participent à l’établissement de la chronologie de l’occupation.

Deux appliques circulaires en bronze étamé identiques, munies de trois rivets disposés en triangle, appartiennent à une garniture de ceinture multipartite étroite de la seconde moitié du viie siècle (fig. 86, no 1 et 2). Ces appliques sont connues dans la nécropole de la Grande Oye à Doubs, dans la sépulture 156 (Urlacher et al. 1998, p. 143, fig. 119), à Eptingen dans le canton de Bâle et dans le canton de Fribourg, à Fétigny (Moosbrugger-Leu 1971, p. 145-146, pl. 31, 118, 122), à Riaz-Tronche-Bélon (sépulture 355) et à Vuippens-la-Falaz (sépulture 144). À Monnet-la-Ville (Jura), trois petites plaques circulaires en fer munies de trois rivets de fixation pourraient appartenir à ce type de ceinture (Mercier, Mercier-Rolland 1974, p. 54).

Une applique verticale en alliage cuivreux à décor moulé d’inspiration végétale correspond à une garniture de ceinture multipartite plutôt rare (fig. 86, no 3). Présents dans des tombes masculines, les éléments de comparaison sont localisés dans une aire géographique allant du Doubs (Arçon, Peseux), de la Côte-d’Or (Auxey, Charnay) jusqu’à Saint-Aubin, dans le canton de Neuchâtel. Cette répartition évoque un style régional, malgré la présence d’une de ces ceintures à Armentières. La sépulture 248 de la nécropole de la Grande Oye, à Doubs, en compte un exemplaire daté de la phase tardive vers 670/680-700 (Urlacher et al. 1998, p. 168).
Une plaque dorsale en fer non damasquinée munie de quatre bossettes en bronze (fig. 86, n° 4) est un élément généralement associé à des boucles en fer circulaires du costume féminin. Fréquentes en Franche-Comté et sur les marges du domaine burgonde, ces ceintures sont datées autour de 600. Un fragment de boucle de ceinture en bronze coulé de type D est orné de traits incisés et daté autour de 600 (fig. 86, n° 5). Deux ardillons de garniture de ceinture en bronze sont présents, le premier est de forme scutiforme en bronze à large plateau, daté autour des années 600 (fig. 86, n° 6), le second, de forme plus étroite et allongée (fig. 86, n° 7). Très endommagée, une plaque-boucle de ceinture en fer, de forme trapézoïdale à extrémité en queue d’aronde à trois bossettes, est caractéristique du type C de l’horizon de Bülach, à décor damasquiné mais trop altéré pour en

Fig. 86 : Accessoires vestimentaires (dessin J. Gelot, clichés P. Haut).
faire une quelconque lecture (fig. 87, no 5). Ce modèle de garniture de ceinture est assez classique et attribuable au premier tiers du vii siècle, on en retrouve des exemples comparables datés des années 600 et 630/640 dans les régions chalonnaise et mâconnaise (Gaillard de Sémainville 1980, fig. 63). Une boucle en fer ovale allongée à section plate avec un départ d’ardillon sur la traverse est d’assez grande dimension et illustre la tendance à l’agrandissement des boucles au cours du vii siècle (fig. 87, no 1). Une autre boucle en fer quadrangulaire à section ovale peut également entrer dans le domaine vestimentaire (fig. 87, no 2). Ce genre de boucles simples en fer est très répandu en Gaule de l’Est, entre la fin du ve et le vii siècle. Un fragment de fibule ansée symétrique en alliage cuivreux, ornée de traits incisés (fig. 87, no 3), date du milieu du vii siècle. Une pendeloque, en forme de sphère en tôle de bronze doré à l’or, était suspendue par une petite tige en fer à l’extrémité cassée (fig. 87, no 6), cet
Fig. 88: L'armement et le matériel équestre (dessin J. Gelot, clichés P. Haut).
objet, peu commun, pouvait être attaché à la châtelaine d’une femme ou simplement cousu à un vêtement. Une agrafe en fer à double crochet est formée de deux pièces circulaires soudées entre elles par une petite plaque rectangulaire plus épaisse et d’une tige repliée, de section circulaire, destinée à la fixation, l’autre extrémité étant cassée. Un des disques plats porte une ornementation géométrique rappelant des décors floraux (fig. 87, no 4). Un ferret de chaussure très plat, à un trou de fixation, est incomplet, et présente un décor damasquiné composé de simples lignes parallèles sur un bord (fig. 87, no 7). Une petite perle en jais (fig. 87, no 8) constitue le seul élément de parure se rapportant à un collier, avec la perle en verre étudiée dans la partie concernant ce matériau.

L’armement et le matériel équestre

Rarement attestés dans la sphère domestique, deux objets sont liés à l’armement. Un bouton en bronze à tête plate hémisphérique à trois perforations périphériques correspond à un élément destiné à renforcer la gaine d’un fourreau de scramasaxe du côté du tranchant de la lame (fig. 88, no 2). Ces boutons sont communs au cours de la première moitié du VIIe siècle, dans l’est de la France, la Suisse et l’Allemagne. Un scramasaxe de petite taille de type couteau, à dos courbe, tranchant droit et profil symétrique correspond au Kurzsax d’Allemagne du sud (Wernard 1998) daté du premier quart du VIe siècle jusque dans les années 570-580, ou de la phase chronologique MA2 de Manche-Lorraine (Legoux et al. 2004), entre 520/30 et 560/70/600, pour ces petits scramasaxes dont la longueur de la lame est inférieure à 25 cm. La lame porte une double rainure peu profonde sur les deux faces (fig. 88, no 1). La taille modeste de ce scramasaxe (25,8 cm) en fait aussi bien un outil d’usage quotidien qu’une arme.

Une branche de fer à cheval recourbée à son extrémité, à deux perforations rectangulaires (fig. 88, no 6), accrédite l’emplacement présumé d’un axe de circulation bordé par le mur de délimitation en contrebas de l’atelier artisanal. Un autre exemplaire, tout à fait similaire, possède également une extrémité recourbée et deux perforations quadrangulaires. Ils constituent des témoignages de l’utilisation du cheval pour les travaux des champs et le transport. Leur présence peut être en outre considérée comme un signe extérieur de richesse, les bovins étant privilégiés pour le travail agraire et, de fait, bien représentés dans le spectre de la faune du site, contrairement aux Équidés. Des clous de ferrage sont fréquemment perdus en raison d’une utilisation quotidienne. Leur forme bien caractéristique, à tête parallélépipédique, adaptée aux perforations du fer à cheval, et un corps à section carré qui se réduit par une pointe repliée (fig. 88, no 3) permettent de les identifier facilement.

Les clous

Présent en grand nombre sur le site, ce type d’objet est de loin le plus répandu et les formes sont des plus diversifiées, à l’image de leurs usages multiples. Ils ne sont donc présentés que de manière synthétique, par quelques exemplaires selon leur critère morphologique. Les catégories créées ont été volontairement réduites à des types simples, à tête circulaire, circulaire décentrée, rectangulaire et informe (fig. 89). De nombreuses tiges cassées à section quadrangulaire répertoriées sur le site et correspondant très certainement à des clous brisés, ajoutent encore à leur proportion. De formes plus caractéristiques, les clous de chaussure sont présents sur les couches d’occupations de l’établissement (fig. 89, no 23 et 24). Deux clous à tête circulaire large, de forme conique assez haute, munis au revers de huit petits mamelons destinés à faciliter l’adhésion de cuir sont originaux (fig. 89, no 25 et 26), car des modèles similaires sont connus et équipent
les caliga de soldats romains des dernières décennies de la République (Poux 1999). Ils sont trouvés au-delà du mur de délimitation de l'atelier artisanal à l'emplacement de l'axe de circulation qui longe l'établissement et constituent apparemment les seuls témoins d'une occupation de cette période sur ce plateau.

La vaisselle en bronze
Une poignée en bronze moulée aux extrémités recourbées est munie de quatre protubérances, le dos de l'objet n'étant pas usé (fig. 90, n° 4). Cet élément de préhension fonctionnant par paire est utilisé sur les bassins en bronze; un exemplaire similaire a été découvert sur l'habitat du haut Moyen Âge de Lausen-Bettenach (Suisse), alors qu'en contexte funéraire, la tombe 193 de la nécropole

Fig. 89: Les clous (dessin J. Gelot, clichés P. Haut).
d’Elgg (Suisse), datée des viᵉ-viiᵉ siècles, a livré un bassin comportant une poi-
gnée de ce genre (Windler 1994).
Deux attaches d’anse d’un bassin en bronze destiné à recevoir une poignée
proche de l’objet précédent, ainsi que des fragments de tôle (fig. 90, nᵒ 1 et 2)
témoignent de la présence de vaisselles métalliques utilisées dans le bâtiment
résidentiel plutôt que récupérées pour un recyclage, comme ce méplat en tôle
de bronze muni de trois perforations et d’une plaquette quadrangulaire (fig. 90,
nᵒ 3). Rare aussi bien en contexte funéraire que sur les habitats en raison de sa
valeur, la vaisselle de bronze possède une connotation qualitative particulièref
et présente un caractère luxueux. Les bassins étaient utilisés pour le lavage des
mains avant de passer à table et jouaient également un rôle dans le domaine
sacré. L’habitat de Develier-Courtételle (Jura suisse) a également fourni une
attache similaire, datée des deux premiers tiers du viᵉ siècle (Friedli 2007,
p. 128, fig. 185 nᵒ 4).

La quincaillerie
Cette catégorie rassemble des objets correspondant à l’aménagement de la
maison et à la construction ; elle regroupe donc, par extension, des éléments
dont la fonction précise reste indéterminée. Souvent brisés et corrodés, certains
d’entre eux ne sont pas identifiés mais sont toutefois présentés à titre d’exemple.
Deux crampons en fer, plus large qu’épais et coudés en deux branches effilées
sont reconnus (fig. 91, nᵒ 5 et 6). De tailles diverses, ces objets – utilisés comme
pièces de maintien ou d’assemblage d’éléments en bois – rentrent dans le domaine
de la menuiserie, de l’ameublement et de l’aménagement domestique, comme la
construction des portes. Des fragments de ferrures d’angle leur sont associés et
sont constitués d’un méplat en fer muni d’un clou de fixation à tête circulaire,
ces ferrures sont également utilisées dans la construction comme pièces d’hui-
serie permettant de fixer des éléments en bois entre eux, des planches par exemple
(fig. 91, nᵒ 2). Des crochets peuvent également participer au montage de pièces
composites mettant en scène le bois (fig. 92, nᵒ 7 à 9). On peut ajouter dans
cette catégorie une pommelle en fer circulaire prolongée par deux branches,
amincie mais cassée (fig. 92, nᵒ 5).
Dans le domaine plus spécifique de la serrurerie, une longue clé en fer à tige de
section circulaire à extrémité cassée possède un panneton en T formé de deux

Fig. 90: La vaisselle en bronze (dessin J. Gelot, clichés P. Haut).
dents tournées vers le haut (fig. 91, n° 1). Ces clés rustiques servent vraisembla-
blement à des locaux utilitaires et sont répandues depuis l'Antiquité jusqu'au
vi°-vii° siècle. Un exemplaire de comparaison provient de l'habitat de Poncin
dans l'Ain (Faure-Boucharlat 2001, p. 162, pl. 24, n° 6).

L’outillage
La présence d’un fragment d’une scie en fer (fig. 93, n° 17), seul élément en
relation avec le travail du bois – matériau pourtant très utilisé dans la vie quoti-
dienne et dans la construction –, mérite d’être soulignée, car malgré une utilisa-
tion nécessairement régulière, les scies figurent rarement au catalogue des objets.

Fig. 91 : La quincaillerie (dessin J. Gelot).
Fig. 92 : L’outillage (dessin J. Gelot).
Fig. 93 : L’outillage (dessin J. Gelot).
retrouvés sur les sites d’habitat. Des traces d’utilisation de scie sont ponctuellement attestées sur une corne sur le site. Un fer plat aminci en un tranchant droit à une extrémité (fig. 93, no 11) évoque un possible fer de rabot, à moins qu’il ne s’agisse d’un ciseau droit. Les fiches à bélières, ustensiles aussi communs que les couteaux, se rencontrent autant en contexte funéraire que domestique. Leur utilité reste indéterminée. Elles étaient probablement assez polyvalentes d’après leurs morphologies et leurs tailles variées, une utilisation comme poinçon étant la plus généralement admise. Elles sont constituées d’une tête formée d’un anneau ouvert, prolongée d’une tige à section quadrangulaire en partie torsadée se terminant par une extrémité appointée (fig. 92, no 1 à 4). Un objet similaire mais de taille plus réduite, à tige aplatie, évoque toutefois une autre utilisation (fig. 92, no 6). Poinçons ou ciseaux et alênes présentent une tête massive portant des traces d’aplatissement par martelage, une tige de section quadrangulaire et une extrémité effilée (fig. 93, no 1 à 3). Les alênes ont souvent une tige à profil bipyramidal, effilée aux deux extrémités, l’une des pointes pouvant servir de soie, l’autre de perçoir. Ce sont des outils courants liés aussi bien au travail du cuir qu’à celui du bois et dont l’usage devait être polyvalent à l’exemple des fiches à bélières. Deux aiguilles en fer (fig. 93, no 13 et 14) et une spatule à manche de section circulaire prolongé par une lame de forme triangulaire à tranchant droit, complètent cet outillage sur tige (fig. 93, no 4) à côté d’éléments brisés peu identifiables (fig. 93).

Dans le domaine des outils agricoles, la pointe en fer, cassée, de section quadrangulaire, appartient vraisemblablement à une fourche (fig. 93, no 10), alors que l’autre tige à section circulaire s’apparente davantage à un élément d’assemblage, d’après sa section épaisse (fig. 93, no 16). La partie proximale de force à lames étroites formant un ressort en forme de U (fig. 93, no 18) est un instrument répandu dans les sépultures féminines et masculines, et on lui attribue l’usage de la découpe de tissus ou la tonte des moutons. La présence de bétail peut être supposée également par la présence de deux tiges en fer repliées en crochet et munies d’une surépaisseur quadrangulaire à l’autre extrémité, pouvant correspondre à des éléments de battant de sonnette (fig. 92, no 10 et 11).

L’équipement personnel

Les cinq couteaux en fer retrouvés sur le site appartiennent à des modèles courants du haut Moyen Âge utilisés à des fins domestiques et se rattachent vraisemblablement à de l’équipement personnel. On les retrouve fréquemment sur des habitats et en contexte funéraire. L’emploi de ce type d’objet devait être diversifié, comme en témoignent d’ailleurs leurs formes et leurs dimensions : cuisine, taille végétale, découpe du cuir, du bois ou de la corne (fig. 94). Ces couteaux à soie de section rectangulaire dans le prolongement du dos, à tranchant droit, ou asymétrique à lame large usée, très marquée par la concavité irrégulière du fil du tranchant dû à des affûtages successifs, ou encore à dos courbé à l’approche de la pointe, illustrent des formes assez caractéristiques du haut Moyen Âge. Un couteau se singularise toutefois par sa petite taille et un dos très courbé à mesure que l’on se rapproche de la pointe, une soie amincie (fig. 94, no 4), et évoque une activité spécifique (taille de végétaux ?). Ces différentes formes répondent à des usages variés et n’ont aucune valeur chronologique.

Un flan monétaire

J. Pilet-Lemière

D’un diamètre de 11 mm, ce flan est en argent et pèse 1,20 g. (fig. 95). Il est probable qu’il s’agisse d’un flan obtenu par coulage et destiné à être frappé,
Fig. 94: Les couteaux (clichés P. Haut).
Chap. 3 – Le mobilier

la percussion entraînant un élargissement du diamètre et une diminution de l’épaisseur. La présence de cet objet exceptionnel trouvé dans le niveau d’occupation à proximité de l’atelier artisanal (Us.13/14) pose question quant aux activités métallurgiques développées sur le site. En effet, les exemplaires connus sont généralement liés à un possible atelier monétaire, ou plus fréquemment associés à un dépôt funéraire. Ce futur denier mérovingien aurait pu être fabriqué entre les années 675/680 et jusqu’aux années 700.

Conclusion

L’indigence des données concernant l’habitat du haut Moyen Âge limite encore les comparaisons et les interprétations sur les différentes catégories de mobilier retrouvées en contexte domestique. L’établissement de Pratz a livré les habituels témoins de l’outillage du quotidien reflétant l’équipement personnel, des activités agricoles et des pièces de quincaillerie liées à la construction et à l’aménagement de la maison. Les ustensiles du travail des métaux manquent toutefois à cet inventaire, sans doute en raison d’une récupération effectuée sur le site lors de sa phase d’abandon. En effet, les ruines ont été mises à profit comme sources de matériaux divers. Pratz se distingue cependant par des éléments de vaisselle en bronze qui reflètent un niveau de vie élevé, même si celle-ci a pu, le plus souvent, être récupérée en raison de sa valeur, afin d’être recyclée. Cette vaisselle de luxe est rarissime en contexte d’habitat, ainsi que dans le domaine funéraire. Seul l’habitat de Develier-Courtételle, dans le Jura suisse, compte des éléments de comparaison, alors qu’aucune autre occupation de type agropastoral n’en a livré jusqu’à présent. Les quelques témoignages liés à l’armement et au matériel équestres tendent également à indiquer un statut social privilégié. Il est délicat d’interpréter les quelques accessoires vestimentaires qui forment un ensemble encore peu commun sur les habitats, où certains objets sont peu fréquents, même dans le domaine funéraire, à l’exemple de cette pendeloque constituée d’une sphère en tôle de bronze recouvert d’une feuille d’or. La présence d’un flan monétaire en argent constitue une découverte exceptionnelle en contexte domestique, et l’on serait naturellement tenté de l’associer aux indices de travail de métaux non ferreux retrouvés dans l’atelier métallurgique. Il est cependant difficile d’envisager la frappe officielle de monnaie, une activité contrôlée et assujettie à une autorité qui, dans ce contexte local, aurait pu être exercée par les monastères tout proches. Des ateliers monétaires sont connus en Suisse et sont rattachés à un siège épiscopal, à l’exception de l’importante abbaye de Saint-Maurice d’Agaune (Geiger 1979). Régionalement, des activités monétaires sont attestées sur deux sites défensifs de hauteur : Moutiers-Haute-Pierre (Doubs) et Ménétru-le-Vignoble dans le Jura (Gandel, Billoin 2011). En l’absence de déchets, cet élément isolé pose aussi la question d’un travail de faussaire.

Les aiguisoirs

D. Billoin

Sept objets en pierre ont été utilisés comme aiguisoirs et polissoirs. Deux de ces pièces proviennent de l’atelier artisanal, les autres proviennent du secteur d’habitat. Les faciès géologiques indiquent un ramassage régional, de roches assez tendres, essentiellement des grès à grain fin du rhétien des environs de

Fig. 95 : Le flanc monétaire (dessin J. Gelot, clichés P. Haut).
Salins-Arbois, un calcaire d'origine locale ainsi que des grès morainiques. De formes diverses, certains de ces objets ont cependant quelques caractéristiques qui permettent une meilleure prise en main, à l'exemple des pierres à affûter allongées où chacune des faces est utilisée (fig. 96, n° 1 et 2). Les autres pièces correspondent à des aiguiseurs/polissoirs de formes arrondies (fig. 96, n° 6 et 7) ou en tablettes (fig. 96, n° 3 à 5) portant de nombreuses traces d'utilisation longitudinales et transversales, surtout sur leur partie médiane, créant, par l’usure, des surfaces convexes. De fines stries d’aiguisage sont visibles, ainsi que des rainures peu profondes sur certains de ces objets (fig. 96, n° 1 et 5), témoignant de l’affûtage de tranchants de couteau, ce que viennent confirmer les lames de ceux-ci, particulièrement usées et maintes et maintes fois réaffectées. Cette catégorie d’objets lithiques, fréquente sur les habitats du haut Moyen Âge comme à Develier-Courtételle (Fellner 2006), appartiennent à l’équipement domestique, tant pour les travaux manuels que pour le travail aux champs. Ils sont majoritairement retrouvés dans la partie résidentielle du site. Les roches utilisées révèlent un approvisionnement en matière première assez opportuniste à l’échelon local ou régional.

Le matériel de mouture

L. Jaccottey, T. Gluhak, A. Milleville

Même si l’on observe un renouveau dans l’étude du matériel de mouture à l’échelle nationale et ouest-européenne, avec une multiplication des recherches et des publications, les travaux pour le début de l’époque médiévale demeurent quasiment inexistant. Il faut dire que les sites d’habitat fouillés ayant livré des meules et des fragments de meules restent relativement rares pour cette époque ; à titre d’exemple, en Franche-Comté, seuls quatre sites du haut Moyen Âge ont livré du matériel de mouture. Dans certains cas, ce matériel n’est pas daté avec précision et est associé à du matériel antique : le site de hauteur d’Écrille, de la Motte dans le Jura (Fellner et al. 2008) et sur l’église Saint-Martin de Vesoul, en Haute-Saône (Billoin 2005). Dans les autres cas, il s’agit de fragments qui n’apportent aucune information typologique en raison de leur trop grande fragmentation, comme sur les habitats de Courchapon, de Sur le Moulinet (Doubs [Billoin 2007]) et de Rahon, de Corvée Verdat (Jura [Billoin 2003a]). Ces données ne permettent qu’une première approche sur l’origine des matières premières, mais en aucun cas un travail typologique ou morphométrique.

Fig. 96: Les aiguisoirs (dessin J. Gelot).
quelques observations typologiques. Pour la Bourgogne, nous disposons à ce jour d’un lot tout aussi limité, avec en tout et pour tout le seul site de Passy-Verron la Truie Pendue dans l’Yonne, où quelques fragments indéterminables typologiquement ont été repérés.
La situation dans l’est de la France ne semble pas constituer une spécificité, car les données sur l’ensemble du territoire national sont, elles aussi, particulièrement pauvres. La seule étude connue à ce jour pour le matériel de mouture du début du Moyen Âge a été réalisée tout récemment dans le cadre d’un projet collectif de recherche sur l’« habitat rural au Moyen Âge en Pays-de-la-Loire » (Nauleau 2008), où un lot de 49 pièces datées entre le ve et le xii e siècle a été étudié.
L’établissement de Pratz, malgré un nombre limité d’artefacts, a permis de réaliser des observations sur la provenance des matériaux, sur la typologie des pièces ainsi que sur leur position au sein de l’habitat. Il constitue donc un jalon pour cette période où nous manquons encore de repères.

Nature et provenance des roches utilisées

Une première étude macroscopique a permis d’identifier deux principaux types de roche dans le corpus de Pratz: outre sept fragments en basalte, le grès est le plus abondant avec 60 fragments. Ces matériaux étant exogènes, nous avons tenté de déterminer leur origine. L’essentiel de ce travail est fondé sur une étude macroscopique; ce type d’étude ne permet pas de distinguer l’origine des basaltes, sachant que deux grandes régions de production existent à plusieurs centaines de kilomètres du site : le Massif central à l’ouest et le massif de l’Eifel au nord-est. Une analyse géochimique a donc été menée pour préciser l’origine de cette pièce.

Les grès

Le grès est une roche sédimentaire détritique terrigène composée essentiellement de grains de quartz (Foucault, Raoult 2003, p. 166). C’est le matériau le plus abondant sur le site, avec 60 fragments, pour un poids total de 15,53 kg. Cinq types de grès différents ont pu être individualisés par l’analyse macroscopique. Vingt fragments de grès grossier ocre représentent un poids total de 3,065 kg. Ce grès apparaît extérieurement comme une roche mal cimentée à très gros grains (jusqu’à 11 mm), de type conglomérat. En coupe, il s’avère que le ciment existe au cœur de la roche. Son absence en surface correspondrait donc à une altération du bloc. En section, son aspect macroscopique s’apparente à un grès triasique du Buntsandstein, type Arkose (classification de Folk) à feldspaths nombreux (dont des microclines), et à grains hétérogènes parfois supérieurs à 2 mm, d’où la définition de faciès conglomératiques. En lame mince, l’échantillon présente une forte proportion de quartz et peu de feldspaths (fig. IX). Le ciment est siliceux, postérieur au dépôt des grains. Il se présente sous la forme de petits cristaux de quartz parfois automorphes. Outre les grains de quartz, on note la présence de quartzite au sens métamorphique, et de divers minéraux en « poche ».

Les formations gréseuses les plus proches de la zone d’étude sont soit la côte bourguignonne, correspondant au flanc est du massif du Morvan, situé à une petite centaine de kilomètres à l’ouest du site, soit le petit horst cristallin du massif de la Serre à une centaine de kilomètres au nord. Ce type de faciès n’est pas connu dans le massif de la Serre, en revanche des formations similaires ont été observées au niveau d’une zone d’extraction de meules antiques sur la commune de Collonge-en-Charollais (Saône-et-Loire) au lieu-dit le Portus, à environ 120 km à l’est de Pratz.
Un autre faciès de grès est identifié ; il s’agit d’un grès hétérogène gris-ocre, parfois légèrement rosé. Il est grossier, lité, à grains de quartz pouvant atteindre 4 mm et de feldspaths, apparemment bien cimentés, mais sans rapport avec le grès précédemment décrit. Quelques grains de quartz ont été arrachés de la surface active de certaines meules, leur donnant un aspect légèrement vacuolaire. 14 fragments de ce grès, pour un poids de 10,145 kg ont été retrouvés. 13 fragments brûlés de grès similaire ont été découverts lors du décapage pour un poids total de 504 g (fig. IX). Il s’agit également d’un grès de la base du Trias, qui peut être rapproché de la bordure orientale du Morvan. La couleur ocre légèrement rosée de ce matériau permet de le rapprocher de certains affleurements observés dans la région de Chalon-sur-Saône/Montceau-les-Mines (communes de Bissey-sous-Cruchaud, Blanzy et Saint-Vallier) à une centaine de kilomètres au nord-ouest. Mais il convient de rester particulièrement prudents, car il existe de très fortes similitudes entre ces grès et ceux du massif de la Serre de même étage géologique.

Un autre matériau est représenté par trois petits fragments (pour un poids total de 166 g) de grès triasique grossier et hétérogène de couleur grise, avec un litage prononcé (fig. IX). Les grains sont des quartz et des feldspaths peu anguleux. Le liant, de couleur rose, est formé de grains plus petits. Cette matière diffère nettement des échantillons précédents, notamment par la dimension des grains de quartz qui peuvent atteindre 10 mm. À l’œil nu, cette matière est très proche des grès de la Serre, mais là aussi toutes les réserves s’imposent.

Le dernier faciès est un grès ocre orangé, lité, à grains fins et à inclusions de fer. Comme les autres matières, il s’agit vraisemblablement d’un grès triasique. Deux fragments ont été retrouvés pour un poids total de 720 g. L’origine de ce matériau est certainement à rechercher également sur la bordure est du Morvan, dans des faciès plus fins que les grès décrits précédemment.

Le basalte

Sept fragments de basalte ont été découverts. Le basalte est une roche volcanique effusive en général de couleur noire et compacte, à grains fins, voire vitreuse. La présence de bulles dans les basaltes est due aux conditions de mise en place et de refroidissement de la lave, procurant à la roche les qualités mécaniques recherchées pour la mouture. Roche basique, le basalte ne se trouve que dans des régions volcaniques de type Massif central ou massif de l’Eifel.

Analyse géochimique

La condition *sine qua non* d’une bonne analyse géochimique dépend du fait que l’échantillon analysé ait été préservé de toute altération. Pour obtenir de la roche intacte, on préleve un échantillon sous un jet d’eau avec un foret circulaire diamanté monté sur une perceuse à main (fig. 97). La carotte ainsi prélevée a un diamètre de 25 mm et une longueur de 40 à 50 mm, pour un poids de 30 à 40 g. Le matériau à analyser est broyé dans une presse hydraulique et réduit en poudre.

Afin de déterminer les principaux éléments et les éléments trace présents dans la roche par une analyse par spectrométrie de fluorescence X (X-Ray Fluorescence analysis/XRF), tablettes de poudre de la roche et tablettes à fondre sont fabriquées à partir du matériel pulvérisé des échantillons. L’analyse XRF a été réalisée à l’Institut des sciences de la Terre de l’université de Mayence, dans un spectromètre à rayons X Philips MagXPEND, construit en 2002, avec un tube Rh à rayons X, avec une excitation maximale de 3,2 kW pour les éléments principaux et de 3,6 kW pour les éléments trace (tabl. 23). À partir de la composition des éléments principaux, on calcule la composition minérale normative des échantillons en fonction de la norme CIPW (Kelsey 1965). Les échantillons de meule ont été comparés dans le diagramme TAS (Total Alkali Silika) pour les roches volcaniques (Le Bas et al. 1986) avec les valeurs propres aux roches des carrières romaines de l’Eifel de l’Ouest et de l’Est, ainsi qu’à des valeurs de laves du Massif central, trouvées dans la littérature spécifique (fig. 100).

Les échantillons de meule ont ainsi été classés par type de roche dans le diagramme TAS qui indique que la meule a été produite à partir de basalte au sens......

6. Après prélevement de l’échantillon, la pièce est restaurée : un moulage de l’emplacement du prélèvement est réalisé avec du silicone dentaire (fig. 98), puis de la résine synthétique est colorée avec de la poudre d’oxyde de fer afin d’obtenir la couleur exacte de la pièce d’origine. Cette résine synthétique colorée est mélangée à un durcisseur et introduite dans le trou du prélèvement (fig. 99), l’empreinte de silicone est alors fixée sur la surface et la pièce qui est retournée afin que la résine à l’intérieur du trou se répartisse sur la surface du moulage en silicone. Après séchage, on enlève le moulage en silicone et le trou de perçage n’est plus perceptible.
strict. D’après les valeurs de comparaison, l’échantillon provient d’une carrière qui devrait se trouver dans le Massif central et exclut l’Eifel comme origine.
La comparaison des échantillons avec des données du Massif central a été réalisée sur la base des principaux éléments, car l’étude des éléments trace est très lacunaire dans la bibliographie. Les taux de CaO- (oxyde de calcium) et de Al₂O₃- (oxyde d’alumine) de l’échantillon de meule sont confrontés à ceux de laves du Massif central (fig. 101), c’est le taux de MgO- (oxyde de magnésium) et de SiO₂- (oxyde de silice) qui est ainsi comparé (fig. 102). Les taux de CaO- (oxyde de calcium) et de Al₂O₃- (oxyde d’alumine) de l’échantillon sont dans la fourchette de celles du Forez, du Cantal et du Devès. Les taux de MgO- (oxyde de magnésium) et de SiO₂- (oxyde de silice) montrent la plus grande ressemblance avec ceux de laves du Cantal et du Forez.

Les données existantes permettent de supposer que la meule a été taillée dans un basalte de la région du Cantal. Il faut remarquer que la composition d’une lave varie naturellement. Pour donner des conclusions plus précises sur l’origine d’une meule, il faudrait disposer d’un corpus suffisant de données géochimiques sur les différents filons de lave concernés. Ces données de référence devraient couvrir toutes les variabilités chimiques d’une lave censée être la carrière d’origine de la meule. L’attribution définitive d’une meule étudiée à une carrière donnée en dépend.

Cet échantillonnage n’existe pas pour les coulées de lave du Massif central. Les données de référence issues de la bibliographie utilisée ne sont que des valeurs ponctuelles et ne reflètent qu’une tendance générale de quelques laves du Massif central. Elles ne donnent aucune précision sur la variabilité à l’intérieur d’une même coulée et les indications qu’elles nous fournissent concernant l’origine d’une meule restent donc grossières.

Étude typologique

L. Jaccottey

L’établissement rural de Pratz a livré 65 fragments de meule en grès et de basalte : 2 proviennent de l’atelier métallurgique, les 63 autres de la partie résidentielle (tabl. 24). Il s’agit de roches exogènes à la haute chaîne jurassienne. Ces objets renseignent sur une partie des activités pratiquées sur le site et sur les échanges économiques de cette communauté rurale.

Ce matériel est très fragmenté, car, en dehors d’une meule presque complète en basalte (fig. 103) et de deux fragments de meules en grès – qui permettent de restituer deux autres meules –, la très grande majorité des fragments ne dépasse pas un poids de quelques centaines de grammes. Cette très grande fragmentation du matériel de mouture nuit bien évidemment à l’étude typologique, mais également au simple dénombrement des meules présentes sur le site. C’est pourquoi l’étude typologique reprendra les subdivisions de la première partie en traitant les différentes meules matière par matière.

Description des pièces en grès

20 fragments de grès ocre sans ciment apparent, auxquels on peut ajouter les 4 fragments de grès grossier gris altéré par le feu, ont été découverts. L’aspect et la taille de ces fragments semblent se rapporter à une seule meule, même si les remontages n’ont pas été concluants. Il faut dire que le poids moyen des fragments est inférieur à 150 g. La plupart sont de minces éclats perpendiculaires à la surface active de la meule. Cette meule a une épaisseur d’environ

<table>
<thead>
<tr>
<th>échantillon n°</th>
<th>Pratz</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>46,58</td>
</tr>
<tr>
<td>TiO₂</td>
<td>2,34</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>12,91</td>
</tr>
<tr>
<td>Fe₂O₃ (total)</td>
<td>12,85</td>
</tr>
<tr>
<td>MnO</td>
<td>0,18</td>
</tr>
<tr>
<td>MgO</td>
<td>10,93</td>
</tr>
<tr>
<td>CaO</td>
<td>9,46</td>
</tr>
<tr>
<td>Na₂O</td>
<td>2,99</td>
</tr>
<tr>
<td>K₂O</td>
<td>1,13</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0,54</td>
</tr>
<tr>
<td>total</td>
<td>99,91</td>
</tr>
</tbody>
</table>

Sc	21
V	184
Cr	355
chaîne opératoire	58
Ni	282
Cu	71
Zn	110
Ga	18
Rb	28
Sr	601
Y	26
Zr	197
Nb	53
Ba	351
Pb	2
Th	2,5
U	1,7

Ap	1,18
Il	4,46
Or	6,65
Ab	18,48
An	18,46
Mt	1,87
Di	20,34
Ol	24,77
Ne	3,69
Hy	99,88
total	46,58
7,5 cm. La surface active est bouchardée et les gros grains sont polis par l’utilisation; certaines plages sont complètement polies, voire lustrées. La face inférieure est grossièrement mise en forme. Elle semble parallèle à la surface active qui est plate. Aucun fragment de flanc, d’œil ou de système d’entraînement n’a été retrouvé. Malgré son extrême fragmentation, il est possible de restituer une meule dormante, dont la surface inférieure est grossièrement aménagée et la surface active plate. Le diamètre de cette pièce n’est pas connu.

Les 14 fragments de grès gris ocre légèrement rosé représentent les deux tiers du poids total des meules en grès. Il s’agit souvent de fragments assez gros, dont certains ont permis de réaliser des observations typologiques. Un de ces fragments (Us.123, objet isolé n° 162, fig. 104, n° 1) correspond à un fragment d’une meta, la partie inférieure du moulin rotatif, alors que d’autres fragments (Us.122, 123 et 124, fig. 104, n° 2) appartiennent à une autre meule circulaire plate. La meta a un diamètre restitué de 44 cm. Elle est conique et légèrement convexe, avec une pente de la surface active de l’ordre de 9,8°. La surface active est bouchardée et polie, principalement sur son pourtour. La face inférieure, presque parallèle à la première, montre également un poli, sans doute témoin d’une réutilisation postérieure. Le pourtour de la meule est grossièrement régulisé. Son épaisseur est comprise entre 4 et 5,5 cm. L’œil n’est pas conservé.

Fig. 101 : variations de Al_2O_3 (oxyde d'alumine) en fonction de CaO (oxyde de calcium) (mêmes sources des données que pour la figure 109).

Fig. 102 : variations de SiO_2 (oxyde de silice) en fonction de MgO (oxyde de magnésium) (mêmes sources des données que pour la figure 109).
Les autres fragments de grès moyen proviennent de différentes couches (Us.122, 123, 124 et 119, objet isolé n° 163) et semblent appartenir à une seule meule circulaire plate d’un diamètre d’environ 70 cm et d’une épaisseur comprise entre 4,5 et 5,5 cm. La surface active est polie, alors que la surface inférieure est seulement mise en forme. Le pourtour de la pièce est bouchardé. Cette meule correspond également à une meta. Comme pour la pièce précédente, l’œil n’est pas conservé.

Fig. 103 : La meule en basalte devant l’entrée du bâtiment résidentiel (cliché D. Billoin).

Fig. 104 : Les meules (dessin L. Jaccotey).
Tabl. 24: Le matériel de mouture (L. Jaccottey).

<table>
<thead>
<tr>
<th>Us</th>
<th>matière</th>
<th>couleur</th>
<th>grain</th>
<th>typo</th>
<th>pd</th>
<th>Lg.</th>
<th>lg.</th>
<th>ép. min</th>
<th>max.</th>
<th>face 1</th>
<th>SA</th>
<th>face 2</th>
<th>côté</th>
<th>observations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>bât. 1</td>
<td></td>
</tr>
<tr>
<td>Us. 200</td>
<td>basalte</td>
<td></td>
<td>frag.</td>
<td>160 g</td>
<td>7,5 cm</td>
<td>5,5 cm</td>
<td>4 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Us. 212</td>
<td>basalte</td>
<td></td>
<td>frag.</td>
<td>220 g</td>
<td>5,5 cm</td>
<td>8 cm</td>
<td>5 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bât. 2</td>
<td></td>
</tr>
<tr>
<td>Us. 100</td>
<td>basalte</td>
<td></td>
<td>frag.</td>
<td>26 g</td>
<td>3,5 cm</td>
<td>3 cm</td>
<td>2 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>basalte</td>
<td></td>
<td>frag.</td>
<td>7 g</td>
<td>3 cm</td>
<td>2 cm</td>
<td>1,5 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>basalte</td>
<td></td>
<td>frag.</td>
<td>7 g</td>
<td>2 cm</td>
<td>2 cm</td>
<td>1 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>grès ocre grossier (4 mm)</td>
<td>frag. meule</td>
<td>220 g</td>
<td>8 cm</td>
<td>5 cm</td>
<td>5 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>grès ocre grossier (4 mm)</td>
<td>frag. meule</td>
<td>206 g</td>
<td>6 cm</td>
<td>6 cm</td>
<td>2,5 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>grès ocre grossier (4 mm)</td>
<td>frag. meule</td>
<td>65 g</td>
<td>7 cm</td>
<td>3 cm</td>
<td>3 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>grès ocre grossier (4 mm)</td>
<td>frag.</td>
<td>12 g</td>
<td>4 cm</td>
<td>2 cm</td>
<td>1,5 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>grès ocre grossier (4 mm)</td>
<td>frag.</td>
<td>3 g</td>
<td>2,5 cm</td>
<td>1 cm</td>
<td>1 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>grès ocre grossier (4 mm)</td>
<td>frag. meule</td>
<td>38 g</td>
<td>5 cm</td>
<td>3 cm</td>
<td>2,5 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>grès ocre grossier (4 mm)</td>
<td>frag. meule</td>
<td>26 g</td>
<td>3 cm</td>
<td>1,5 cm</td>
<td>3,5 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>grès ocre grossier (4 mm)</td>
<td>frag. meule</td>
<td>13 g</td>
<td>3 cm</td>
<td>2,5 cm</td>
<td>1,5 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>grès ocre grossier (4 mm)</td>
<td>frag.</td>
<td>12 g</td>
<td>4,5 cm</td>
<td>2,5 cm</td>
<td>1 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>grès ocre grossier (4 mm)</td>
<td>frag.</td>
<td>4 g</td>
<td>2,5 cm</td>
<td>1 cm</td>
<td>1,5 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>grès ocre grossier (4 mm)</td>
<td>frag.</td>
<td>2 g</td>
<td>2 cm</td>
<td>1,5 cm</td>
<td>1 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>grès ocre grossier (4 mm)</td>
<td>frag.</td>
<td>2 g</td>
<td>2 cm</td>
<td>1,5 cm</td>
<td>1 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>grès ocre grossier (4 mm)</td>
<td>frag.</td>
<td>1 g</td>
<td>1,5 cm</td>
<td>1 cm</td>
<td>1 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Us. 114</td>
<td>grès hétérogène grossier (11 mm)</td>
<td>frag. meule</td>
<td>69 g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>bouchardé, polie plate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>grès hétérogène grossier (11 mm)</td>
<td>frag. meule</td>
<td>59 g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>bouchardé, polie plate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Us. 119</td>
<td>grès hétérogène grossier (11 mm)</td>
<td>frag. meule</td>
<td>305 g</td>
<td>11 cm</td>
<td>3 cm</td>
<td>7 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>grès gris rosé grossier (4 mm)</td>
<td>frag.</td>
<td>13 g</td>
<td>4 cm</td>
<td>2 cm</td>
<td>4,5 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>grès ocre hétérogène grossier (11 mm)</td>
<td>frag.</td>
<td>13 g</td>
<td>3,5 cm</td>
<td>3 cm</td>
<td>1 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabl. 24 (suite): Le matériel de mouture (L. Jaccottey).

<table>
<thead>
<tr>
<th>Us</th>
<th>matière</th>
<th>couleur</th>
<th>grain</th>
<th>typo</th>
<th>pds</th>
<th>Lg.</th>
<th>lg.</th>
<th>ép. min</th>
<th>max.</th>
<th>face 1</th>
<th>SA</th>
<th>face 2</th>
<th>côté</th>
<th>observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Us. 122</td>
<td>grès</td>
<td>ocre hétérogène</td>
<td>grossier (11 mm)</td>
<td>frag. meule</td>
<td>263 g</td>
<td>15 cm</td>
<td>4 cm</td>
<td>7 cm</td>
<td></td>
<td>bouchardée, plate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Us. 122</td>
<td>grès</td>
<td>ocre hétérogène</td>
<td>grossier (11 mm)</td>
<td>frag. meule</td>
<td>393 g</td>
<td>12 cm</td>
<td>5 cm</td>
<td>6 cm</td>
<td></td>
<td>bouchardée, plate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Us. 122</td>
<td>grès</td>
<td>ocre hétérogène</td>
<td>grossier (11 mm)</td>
<td>frag. meule</td>
<td>27 g</td>
<td>6 cm</td>
<td>1 cm</td>
<td>3 cm</td>
<td></td>
<td>bouchardée, plate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Us. 122</td>
<td>grès</td>
<td>ocre hétérogène</td>
<td>grossier (11 mm)</td>
<td>frag. meule</td>
<td>71 g</td>
<td>7 cm</td>
<td>2 cm</td>
<td>4 cm</td>
<td></td>
<td>bouchardée, plate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Us. 122</td>
<td>grès</td>
<td>ocre hétérogène</td>
<td>grossier (11 mm)</td>
<td>frag. meule</td>
<td>50 g</td>
<td>7 cm</td>
<td>2 cm</td>
<td>3,5 cm</td>
<td></td>
<td>bouchardée, plate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Us. 122</td>
<td>grès</td>
<td>ocre hétérogène</td>
<td>grossier (11 mm)</td>
<td>frag.</td>
<td>19 g</td>
<td>4 cm</td>
<td>3 cm</td>
<td>2 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Us. 122</td>
<td>grès</td>
<td>ocre hétérogène</td>
<td>grossier (11 mm)</td>
<td>frag.</td>
<td>9 g</td>
<td>3 cm</td>
<td>2,5 cm</td>
<td>1 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Us. 122</td>
<td>grès</td>
<td>ocre hétérogène</td>
<td>grossier (11 mm)</td>
<td>frag.</td>
<td>12 g</td>
<td>3,5 cm</td>
<td>3 cm</td>
<td>1 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Us. 122</td>
<td>grès</td>
<td>ocre hétérogène</td>
<td>grossier (11 mm)</td>
<td>frag.</td>
<td>348 g</td>
<td>10 cm</td>
<td>6 cm</td>
<td>4 cm</td>
<td></td>
<td>brûlé</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Us. 122</td>
<td>gris ro</td>
<td>gris rosé</td>
<td>grossier (4 mm)</td>
<td>frag. meule</td>
<td>577 g</td>
<td>9 cm</td>
<td>7 cm</td>
<td>5,5 cm</td>
<td></td>
<td>bouchardée, plate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Us. 122</td>
<td>gris ro</td>
<td>gris rosé</td>
<td>grossier (4 mm)</td>
<td>frag. meule</td>
<td>634 g</td>
<td>9 cm</td>
<td>6 cm</td>
<td>5,5 cm</td>
<td></td>
<td>bouchardée, plate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Us. 122</td>
<td>gris ro</td>
<td>gris rosé</td>
<td>grossier (4 mm)</td>
<td>frag. meule</td>
<td>338 g</td>
<td>7 cm</td>
<td>7 cm</td>
<td>2 cm</td>
<td></td>
<td>bouchardée, plate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Us. 122</td>
<td>gris ro</td>
<td>gris rosé</td>
<td>grossier (4 mm)</td>
<td>frag.</td>
<td>129 g</td>
<td>6 cm</td>
<td>4,5 cm</td>
<td>4 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Us. 122</td>
<td>gris ro</td>
<td>gris rosé</td>
<td>grossier (4 mm)</td>
<td>frag.</td>
<td>38 g</td>
<td>5,5 cm</td>
<td>3 cm</td>
<td>2 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Us. 122</td>
<td>gris ro</td>
<td>gris rosé</td>
<td>grossier (4 mm)</td>
<td>frag. meule</td>
<td>46 g</td>
<td>4,5 cm</td>
<td>2,5 cm</td>
<td>4 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Us. 122</td>
<td>gris ro</td>
<td>gris rosé</td>
<td>grossier (4 mm)</td>
<td>frag.</td>
<td>28 g</td>
<td>3,5 cm</td>
<td>2 cm</td>
<td>3 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Us. 122</td>
<td>Oi n°96</td>
<td>basalte</td>
<td>meta</td>
<td>13000 g</td>
<td>42 cm</td>
<td>2 cm</td>
<td>7 cm</td>
<td>bouchardée, polie</td>
<td></td>
<td>convex</td>
<td>bouchardée</td>
<td>bouchardé</td>
<td>remontage Us. 124</td>
<td></td>
</tr>
<tr>
<td>Us. 123</td>
<td>Oi n°162</td>
<td>grès</td>
<td>grossier (4 mm)</td>
<td>meta (diam. 44)</td>
<td>15,5 cm</td>
<td>19 cm</td>
<td>5,5 cm</td>
<td></td>
<td></td>
<td>dessin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Us. 123</td>
<td>Oi n°163</td>
<td>grès</td>
<td>grossier (4 mm)</td>
<td>1600 g</td>
<td>16,5 cm</td>
<td>11 cm</td>
<td>5,2 cm</td>
<td></td>
<td></td>
<td>remontage Us. 124</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Us. 124</td>
<td>basalte</td>
<td></td>
<td>frag. meule</td>
<td>221 g</td>
<td>9 cm</td>
<td>7 cm</td>
<td>2 cm</td>
<td>bouchardée, polie</td>
<td></td>
<td>convex</td>
<td>bouchardée</td>
<td>bouchardé</td>
<td>remontage Us. 122</td>
<td></td>
</tr>
<tr>
<td>Us. 124</td>
<td>grès</td>
<td>ocre hétérogène</td>
<td>grossier (11 mm)</td>
<td>frag. meule</td>
<td>686 g</td>
<td>16 cm</td>
<td>4,5 cm</td>
<td>7,5 cm</td>
<td></td>
<td>bouchardée, polie</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabl. 24 (suite et fin): Le matériel de mouture (L. Jaccottey).

<table>
<thead>
<tr>
<th>Ustensile</th>
<th>Matière</th>
<th>Couleur</th>
<th>Grain</th>
<th>Typo</th>
<th>Pds</th>
<th>Lg.</th>
<th>Lg.</th>
<th>Ép. min</th>
<th>Max.</th>
<th>Face 1</th>
<th>SA</th>
<th>Face 2</th>
<th>Côté</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>grès</td>
<td>ocre</td>
<td>hétérogène</td>
<td>grossier (11 mm)</td>
<td>frag. meule</td>
<td>263 g</td>
<td>9 cm</td>
<td>4 cm</td>
<td>5 cm</td>
<td>bouchardée, polieplate</td>
<td>plate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>grès</td>
<td>ocre</td>
<td>hétérogène</td>
<td>grossier (11 mm)</td>
<td>frag.</td>
<td>45 g</td>
<td>7 cm</td>
<td>3,5 cm</td>
<td>1 cm</td>
<td>bouchardée, polieplate</td>
<td>plate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>grès</td>
<td>ocre</td>
<td>hétérogène</td>
<td>grossier (11 mm)</td>
<td>frag.</td>
<td>73 g</td>
<td>8 cm</td>
<td>3,5 cm</td>
<td>2,5 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>grès</td>
<td>ocre</td>
<td>hétérogène</td>
<td>grossier (11 mm)</td>
<td>frag.</td>
<td>53 g</td>
<td>5,5 cm</td>
<td>5 cm</td>
<td>1 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>grès</td>
<td>ocre</td>
<td>hétérogène</td>
<td>grossier (11 mm)</td>
<td>frag.</td>
<td>84 g</td>
<td>6 cm</td>
<td>5,5 cm</td>
<td>2,5 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabl. 25: Tableau synthétique du matériel de mouture en Franche-Comté et Jura suisse pour le début du Moyen Âge (d’après Marti et al. 2006).

<table>
<thead>
<tr>
<th>Site</th>
<th>Datation</th>
<th>Matière</th>
<th>Typologie</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Courchapon, Sur le Moulinet (25)</td>
<td>VIIe-IXe s.</td>
<td>grès de la Serre</td>
<td>1 fragment</td>
<td>25 km (ouest)</td>
</tr>
<tr>
<td>Écrille, la Motte (39)</td>
<td>IVe-VIIe s.</td>
<td>basalte grès de la Serre</td>
<td>1 meta, 1 catillus</td>
<td>270 km (sud-ouest), 85 km (nord)</td>
</tr>
<tr>
<td>Longwy-sur-le-Doubs, Moussière (39)</td>
<td>VIe-VIIIe s.</td>
<td>grès de la Serre</td>
<td>1 fragment meule</td>
<td>25 km (nord-est)</td>
</tr>
<tr>
<td>Pratz, le Curtillet (39)</td>
<td>VIIe s.</td>
<td>basalte Cantal grès ocre Morvan? grès gris ocre Morvan? grès de la Serre grès fin ocre Morvan?</td>
<td>1 meta + 5 fragments, 23 fragments meule, 2 meta + 24 fragments, 3 fragments meule, 2 fragments</td>
<td>400 km (sud-est), 80-120 km (ouest), 80-120 km (nord), 100 km (nord)</td>
</tr>
<tr>
<td>Rahon, Corvée Verdat (39)</td>
<td>VIIe-VIIIe s.</td>
<td>basalte grès de la Serre</td>
<td>6 fragments, 3 fragments</td>
<td>370 km (sud-ouest), 20 km (nord)</td>
</tr>
<tr>
<td>Vesoul, Saint Martin (70)</td>
<td>VIIe-VIIIe s.</td>
<td>grès de la Serre</td>
<td>1 catillus</td>
<td>70 km (sud-ouest)</td>
</tr>
<tr>
<td>Develier-Courtételle (Jura, Ch)*</td>
<td>VIIe s.</td>
<td>tuffo grès feldspathique grès vosgien grès arkosique grès feldspathique brèche de Schweigmatt granite à amphibole</td>
<td>3 catillus, 1 meta + 1 catillus, 1 meule, 1 meule, 2 meules (réutilisation?), 1 va/vient (réutilisation)</td>
<td>60 km (nord-ouest), 60 km (nord-ouest), 60 km (nord-ouest), 80 km (nord-est)</td>
</tr>
<tr>
<td>Passy-Verron, la Truie Pendue (89)</td>
<td>VIIe-VIIIe s.</td>
<td>grès Serre (?) grès fin indéterminé</td>
<td>1 catillus + 5 fragments, 2 fragments</td>
<td>200 km (sud-est), ?</td>
</tr>
</tbody>
</table>
Les 13 fragments brûlés découverts lors du décapage (Us.100) appartiennent a priori également à une meule plate, peut-être la précédente, mais l’épaisseur est moins importante : entre 1,5 et 3,5 cm. Les trois fragments de grès hétérogène de couleur grise correspondent à une autre meule d’un type qui n’a pas pu être identifié. Enfin, les deux fragments de grès ocre plus fin ne comportent pas de surface active. Ils ne correspondent pas forcément à du matériel de mouture, mais peut-être à du mobilier de polissage.

Description des pièces en basalte
Le mobilier en basalte est composé d’une meule quasiment complète d’un diamètre de 42 cm provenant de l’habitat (Us.122) et de quelques petits fragments. Il s’agit d’une meule dormante circulaire de type meta. Sa surface supérieure, ou surface active, est convexe avec une pente assez marquée de 18° (fig. 103 et 104). Elle est bouchardée et polie, alors que la surface inférieure est grossièrement mise en forme. Son épaisseur extérieure est de 2 cm et de 7 cm en son centre. Elle possède une perforation centrale et son pourtour est bouchardé. Un remontage a été effectué avec un fragment provenant de la couche d’occupation (Us.124).

L’aspect macroscopique des autres fragments, de même que leurs épaisseurs, signale une autre pièce.

Remarques sur le matériel de mouture au début du Moyen Âge et comparaisons
Le nombre de meules présentant des caractères typologiques étudiables est très limité (tabl. 25) et nous ne disposons de données que pour les sites d’Écrille, de Vesoul, de Develier-Courtételle et de Pratz, soit seulement huit meules.

Un des critères de datation des meules est leur diamètre. Les meules antiques ont un diamètre compris entre 40 et 48 cm ; la moyenne étant de 44 cm, ce qui correspond à peu près à un pied et demi. Pour le début du Moyen Âge, il n’existe encore aucun référentiel régional. Les seuls éléments de comparaison sont issus de l’étude menée en Pays-de-la-Loire (Nauleau 2008), qui montre une très grande variabilité des diamètres, entre 30 et 54 cm pour les meules antérieures au x° siècle. Ces dimensions correspondent à la fourchette de l’ensemble des meules rotatives à bras, dont le diamètre est tributaire de la longueur du bras.

Pour les sites pris en compte, deux lots se dégagent très nettement : le premier entre 40 et 44 cm de diamètre, c’est-à-dire autour des valeurs couramment observées pour les meules à bras de l’époque antique, et le second autour de 70 cm de diamètre. Les meules du premier ensemble sont présentes sur tous les sites, dont Vesoul et Écrille, où des vestiges antiques sont également connus, il ne peut donc être complètement exclu, notamment pour ce dernier, qu’il s’agisse de pièces antérieures à la période étudiée. Les meules d’un diamètre de 70 cm ne semblent pas correspondre à des meules à bras. À Develier-Courtételle, les meules de ce diamètre ont été découvertes à proximité d’un cours d’eau et d’un alluchon en bois (élément d’un rouet), qui permettent de restituer un moulin hydraulique (Marti et al. 2006, p. 140).

Un autre élément de datation du matériel de mouture est la forme conique de la surface active, qui se traduit sur la hauteur des meules. En Pays-de-la-Loire, la majorité des meules du haut Moyen Âge ont une hauteur comprise entre 4 et 8 cm, alors qu’elle est comprise entre 7 et 15 cm pour les meules antiques.
et peut atteindre jusqu’à 18 cm pour celles de La Tène finale (Nauleau 2008, p. 5). Ces meules médiévales ont en fait une surface active plate ou à pente très faible. Pour la même période, à Saint-Gilles-le-Vieux à Aimargues (Gard), quatre meules en grès coquillier sont peu coniques (Maufras, Mercier 2006, p. 152). Les trois meules en granite découvertes au Mesnil, sur la commune de Plomb dans la Manche, sont peu coniques (Carpentier 2007, p. 35) pour une datation entre le ixᵉ et le xiiᵉ siècle.

On peut également subdiviser les meules étudiées en deux lots : les meules dont la surface active est plate ou à très faible conicité et celles dont la surface active a une pente plus marquée. À une exception près, cette subdivision correspond à celle des meules en fonction de leur diamètre ; c’est-à-dire que les meules à faible conicité ont un diamètre d’environ 70 cm, alors que celles dont la pente est plus marquée ont un diamètre compris entre 40 et 44 cm. Seul le catillus découvert à Vesoul, d’un diamètre de 44 cm, possède une surface active plate sur laquelle sont visibles deux logements quadrangulaires pour insérer une anille. Il est possible de restituer, dans ce cas, un moulin en auge ou en cuve, dont les exemplaires connus sont datés à partir du début du Moyen Âge en Pays-de-la-Loire (Nauleau 2008, p. 7), en Normandie (Chaussat 2008, p. 65) et à partir du viᵉ siècle en Languedoc (Nauleau 2008, p. 7).

Hors de la région d’étude, le système d’entraînement observé pour les catillus est une perforation verticale permettant l’introduction d’un manchon ou d’une perche (Carpentier 2007, p. 34 ; Nauleau 2008, p. 5). Il est possible que l’on passe d’un emmanchement latéral, à l’époque antique, à un emmanchement vertical à l’époque médiévale (Chaussat 2008, p. 69).

La meta en grès gris ocre, provenant probablement du Morvan, outre son diamètre et sa pente, présente assez peu de critères typologiques (œil non conservé). De plus, les éléments de comparaison manquent pour les meules en grès de Bourgogne.

La seconde meta est en basalte du Cantal. Cette meule, d’un diamètre de 42 cm, a un œil perforant, une surface active très conique (18 °) et une face inférieure plane. Un rapide survol des meules en basalte présentant des caractéristiques proches nous oriente vers des pièces observées sur des sites de Rhône-Alpes ou d’Auvergne : la Pacaudière, Ariolica, Poncins, Grattaloup (Loire), Annecy, Chemin des Fins (Haute-Savoie), Vienne (Isère) et Lyon (Rhône) (Bettiga 1997). Cette répartition correspond à peu près à celle des basaltes du Massif central pour l’époque antique, la chronologie de ces sites se rapportant exclusivement à la période romaine. Le diamètre de cette pièce, sa forme conique ainsi que les différents éléments de comparaison posent la question de la chronologie et d’une éventuelle réutilisation d’une meule antique.

La meule plate d’un diamètre de 70 cm trouve des comparaisons très fortes avec celles en tuffogrès feldspathique de Develier-Courtételle. Cependant, sur ce site helvétique, les meules de ce type semblaient liées à un moulin hydraulique, ce qui est totalement exclu sur le site de Pratz. Le diamètre de cette pièce est également complètement incompatible avec celui des meules à bras et il est bien plus important que celui des meules du début du Moyen Âge connues dans l’ouest de la France. La conservation très partielle de cette pièce ne nous permet cependant pas de restituer le système d’entraînement de cette meule.

Les deux autres meules plates en grès grossier ocre et en en grès gris brûlé (Us.100) sont trop fragmentaires pour être restituées, elles semblent cependant comparables aux meules les plus courantes pour cette période chronologique.
Conclusion

Le matériel de mouture de Pratz est constitué à la fois de grès grossiers et de basalte. Cinq types de grès ont pu être identifiés. Il est souvent difficile d'identifier avec précision l'origine d’un grès triasique au sein des différentes zones d’affleurements potentiels. Cependant, certains critères laissent penser que la plupart des fragments de meules retrouvés (correspondant à quatre types de grès) pourraient provenir de la frange orientale du massif du Morvan; pour quelques fragments (correspondant à un type de grès), il est probable que la zone d’extraction soit à rechercher dans le massif de la Serre. Dans les deux cas, les affleurements sont situés à environ 100 km de distance et la présence de meules dans ces matériaux témoigne d’échanges à l’échelle régionale.

Le cas du basalte est bien différent puisqu’il s’agit d’une roche totalement étrangère à la région comme l’a montré l’analyse géochimique, en provenance du Cantal, à près de 400 km au sud de Pratz.

Les données comparatives sont peu nombreuses pour l’ensemble de cette période. Elles permettent toutefois de tirer quelques conclusions sur les roches meulières utilisées et leur circulation (tabl. 26). On observe une nette prédominance des roches gréseuses qui constituent plus de 80% du matériel de mouture. Il faut en effet exclure le seul élément en granite qui est une meule de type va-et-vient néolithique ou protohistorique en réemploi dans une construction du site de Develier-Courtételle (Marti et al. 2006, p. 139); de la même façon les meules en brèche de Schweigmatt (Allemagne) découvertes, sur le même site sont probablement des pièces de la fin de La Tène ou du début de l’Antiquité qui ont été réémployées, cette matière n’étant exploitée qu’à cette période (Joos 1975).

Outre les grès, ne sont présents que des fragments de basalte et en quantité modeste. Cette roche n’a été découverte que sur des sites jurassiens, et même si nous ne connaissons que la provenance de la meule de Pratz, il est très probable que les autres pièces ont également une origine à rechercher dans le Massif central. Cette situation correspond à un prolongement de ce que l’on connaît dans l’Antiquité, où les meules en basalte sont les plus abondantes dans le sud de la Franche-Comté (Jaccottey et al. 2007, p. 226). Mais, avec la fin de l’Antiquité, le basalte semble être désaffecté au profit des grès qui vont devenir prédominants dans les corpus comtois à l’époque médiévale (Jaccottey 2009). Un phénomène similaire a déjà été mis en évidence dans la basse vallée du Rhône, avec l’abandon des carrières de basalte comme celle d’Agde, au profit de carrières plus limitées telles que celle de Saint-Quentin-la-Poterie à partir de l’Antiquité tardive (Longepierre 2006, p. 48).

Au sein des grès, les trois zones d’approvisionnement du Morvan, de la Serre et des Vosges sont utilisées. Dans tous les cas, ce sont les matériaux dont l’origine est la plus proche des sites de consommation qui sont les plus abondants dans les corpus: ainsi, pour Pratz, les grès en provenance probable du Morvan ou, pour Develier-Courtételle, les roches vosgiennes. Toutefois, des grès en provenance probable du massif de la Serre sont présents sur le site de Courtedoux, dans le Jura suisse (Deslex Sheikh, Amiot, 2007; information R. Fellner), et peut-être également sur le site de Passy-Verron dans l’Yonne. Dans ces deux cas, cette diffusion s’effectuerait à plus de 100 km des zones de production.

L’étude menée ici montre que la plupart des roches utilisées, en l’absence de matière première locale, proviennent a priori d’affleurements régionaux tels que le Morvan et la Serre, mais que le recours à des provenances extra-régionales est également possible de manière plus marginale. Ce recours aux matériaux régionaux, essentiellement gréseux ou granitiques, semble être une caractéristique...
de cette période, par rapport à l’époque antique. Bien que très fragmentaire, le mobilier apporte quelques informations d’ordre typologique avec la présence de meules à bras coniques proches des meules antiques, mais aussi de meules plates comparables à celles observées sur d’autres sites contemporains de l’ouest de la France. En revanche, le système d’entraînement n’a pu être observé. La position du matériel au niveau de l’une des pièces du bâtiment résidentiel, dont la fonction semble correspondre à une cuisine, confère au corpus une fonction clairement domestique. Ce caractère domestique du matériel de mouture est compatible avec l’utilisation de meules à bras.

Les vestiges osseux animaux

B. Clavel

Le volume de données, assez conséquent au premier abord, si on le considère dans sa globalité, demeure toutefois limité au regard de l’importance de l’assiette de la fouille, avec 1095 restes osseux animaux (dont 505 déterminés) sur près de 3200 m². Néanmoins, les vestiges osseux répartis sur plusieurs unités stratigraphiques (21 au total) proviennent en grande partie de la zone d’activité artisanale (tabl. 28). Cet échantillon constitue, en réalité, une opportunité rare d’aborder l’alimentation d’un établissement rural, en particulier des occupants d’un atelier métallurgique altomédiéval et, dans une moindre mesure, l’élevage dans un secteur géographique sous-documenté à ce jour. En effet, les ossements animaux des sites ruraux des périodes historiques restent peu fréquents dans le Jura et les quelques données collectées jusqu’à présent n’autorisent pas encore une première approche synthétique à l’échelle régionale. Le petit ensemble découvert à Pratz complète donc le groupe, encore peu fourni, des sites mérovingiens de la partie septentrionale de l’Arc jurassien. Il s’ajoute ainsi aux corpus plus imposants des sites suisses de Develier-Courtételle (Olive 1999) et de Courtedoux-Creugenat (Putelat 2007), où plus de 10 000 pièces osseuses animales ont été analysées. Son exploitation et la crédibilité des résultats obtenus risquent d’être plus limitées. Ces dernières remarques valent également pour les 14 fragments osseux issus du site mérovingien de Delle la Queue au Loup (Territoire de Belfort [Biloin et al. 2010]), ou encore pour les 168 pièces découvertes à Porrentruy la Rasse (Demarez 2003) dans le Jura suisse.

État de conservation

Les effets des différentes contraintes qu’ont pu subir les os avant ou après leur enfouissement sont très nets. Les facteurs d’érosion du sol, mais aussi et surtout les nombreux agents de destruction rencontrés dans de tels contextes
de circulation et de vie, n’ont pas ménagé les vestiges osseux. Au piétinement s’ajoutent l’action des chiens ou d’autres charognards (0,2 % des pièces), des rongeurs, la fragmentation et la découpe de boucherie (1,1 % des esquilles portent encore des traces visibles), voire aussi la cuisson et la carbonisation (5,7 % des os). Cette altération est, dans certains cas, due à une exposition prolongée aux agents atmosphériques. Celle-ci est parfois suffisamment sévère pour avoir entraîné une destruction importante d’os compacts comme des radius de bœuf (Us.22, M.5). Certains éléments osseux ont également subi l’attaque des radicelles des végétaux. Leur surface a en partie disparu. La faune est donc dans l’ensemble très abîmée et esquillée, et les os intacts demeurent rares.

Caractérisation du dépôt

La fragmentation constitue l’un des indices utiles à la description des échantillons. Celle-ci peut notamment se percevoir au travers du pourcentage d’os indéterminés et du poids moyen (PM) des os indéterminés. Le nombre de restes indéterminés s’élève à 624, soit 55,1 % des os. Le poids moyen d’un os indéterminé est extrêmement faible, dépassant à peine 1 g (1,1g). Le niveau de fragmentation très important est dû ici à la nature du dépôt : un niveau de sol. En règle générale, une forte sélection des os avant enfouissement (le temps du séjour sur le sol ou/et la distance parcourue par rapport à la zone de rejet) entraîne une augmentation du poids moyen des indéterminés, liée à une diminution de leur fréquence. Une baisse des poids moyens des os indéterminés est souvent interprétée alors comme le résultat d’un mode d’accumulation des os de plus en plus direct (fosse dépotoir par exemple). Dans le cas de Pratz, le niveau de fragmentation, très élevé, et le taux de détermination faible traduisent une autre réalité : une altération importante des os due au piétinement.

Influence du mode d’accumulation sur la représentation des espèces

Ce niveau de préservation mis en évidence, il est utile désormais d’estimer son influence sur la représentation des espèces. Les travaux de J.-H. Yvinec (Yvinec 1997) ont montré l’importance de prendre en compte ces phénomènes pendant la phase d’exploitation des résultats. Il faut savoir que, dans la majorité des cas, les ossements de Caprinés (Chèvre et Mouton) sont particulièrement sensibles aux niveaux de sélections. Plus les os sont sélectionnés par la taille (donc gros), plus les Caprinés sont sous-représentés, comme c’est le cas dans tous les habitats ruraux du haut Moyen Âge du nord de la France. En revanche, à Pratz, les Caprinés sont favorisés, car les petits os, dans ce type d’accumulation, s’enfouissent sans être obligatoirement évacués. Il convient donc dès à présent de souligner la difficulté de comparer nos données avec d’autres sites en raison des problèmes liés aux modes de dépôt des déchets, très différents selon les sites.

Dénombrement

Au premier rang figurent les espèces domestiques : le Bœuf, le Porc, le Mouton (*Ovis aries*) et la Chèvre (*Capra hircus*), regroupés sous le rang taxonomique de Caprinés, le Cheval et le Coq (tabl. 28 et fig. 105). Les Équidés ne se signalent que par la présence de cinq fragments osseux et dentaires7 qui témoigne probablement d’une mixité des rejets. Parmi les reliefs de repas, on rencontre quelques pièces liées sans doute à la gestion des carcasses. Aucun indice ne permet d’attester la consommation de viande équine à Pratz, contrairement au site de Develier-Courtételle (Olive 1999) où des séries

7. Un fragment de métapode (Us.31), et quatre dents ou fragments de dents (molaire supérieure dans les Us.31 et 56, deux prémolaires supérieures dans l’Us.56).
de traces de prélèvement de la chair ont été repérées sur des fragments osseux révélant peut-être l’existence de cette pratique. L’hippophagie, qui est presque totalement abandonnée durant l’Antiquité, ne réapparaît dans les franges septentrionales de l’Empire, probablement au contact des Germains chez qui cette consommation est courante (Lepezet 1996), qu’à partir de la seconde moitié du IVe siècle. Ce choix alimentaire demeure très anecdotique jusqu’à la fin du Bas-Empire et ne se manifeste que de manière assez discrète durant tout le haut Moyen Âge (Arbogast et al. 2002 ; Frère, Yvinec 2009), en tous les cas, sur les territoires suffisamment éloignés de l’influence des peuplades de tradition plus germanique.

Tabl. 28 : Inventaire de la faune découverte au niveau de l’atelier et de l’habitat (B. Clavel).

<table>
<thead>
<tr>
<th>Pratz, le Curtillet (39), atelier</th>
<th>NR</th>
<th>% NR</th>
<th>masse (g)</th>
<th>% masse</th>
</tr>
</thead>
<tbody>
<tr>
<td>bœuf (Bos taurus)</td>
<td>112</td>
<td>14,0</td>
<td>2310</td>
<td>63,6</td>
</tr>
<tr>
<td>porc (Sus scrofa domesticus)</td>
<td>101</td>
<td>12,6</td>
<td>335</td>
<td>9,2</td>
</tr>
<tr>
<td>caprinés (Caprin)</td>
<td>102</td>
<td>12,8</td>
<td>297</td>
<td>8,2</td>
</tr>
<tr>
<td>cheval (Equus caballus)</td>
<td>5</td>
<td>0,6</td>
<td>250</td>
<td>6,9</td>
</tr>
<tr>
<td>sanglier (Sus scrofa scrofa)</td>
<td>2</td>
<td>0,3</td>
<td>14</td>
<td>0,4</td>
</tr>
<tr>
<td>rongeur indét. (Rodentia)</td>
<td>4</td>
<td>0,5</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>mammifères indéterminés</td>
<td>474</td>
<td>59,3</td>
<td>424</td>
<td>11,7</td>
</tr>
<tr>
<td>total mammifères</td>
<td>800</td>
<td>100,0</td>
<td>3630</td>
<td>100,0</td>
</tr>
<tr>
<td>coq domestique (Gallus domesticus)</td>
<td>8</td>
<td>88,9</td>
<td>8</td>
<td>100,0</td>
</tr>
<tr>
<td>oiseaux indéterminés</td>
<td>1</td>
<td>11,1</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>total oiseaux</td>
<td>9</td>
<td>100,0</td>
<td>8</td>
<td>100,0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pratz, le Curtillet (39), habitat</th>
<th>NR</th>
<th>% NR</th>
<th>masse (g)</th>
<th>% masse</th>
</tr>
</thead>
<tbody>
<tr>
<td>bœuf (Bos taurus)</td>
<td>79</td>
<td>27,8</td>
<td>2625</td>
<td>78,0</td>
</tr>
<tr>
<td>porc (Sus scrofa domesticus)</td>
<td>56</td>
<td>19,7</td>
<td>334</td>
<td>9,9</td>
</tr>
<tr>
<td>caprinés (Caprin)</td>
<td>31</td>
<td>10,9</td>
<td>103</td>
<td>3,1</td>
</tr>
<tr>
<td>cerf (Cervus elaphus)</td>
<td>3</td>
<td>1,1</td>
<td>78</td>
<td>2,3</td>
</tr>
<tr>
<td>mammifères indéterminés</td>
<td>115</td>
<td>40,5</td>
<td>226</td>
<td>6,7</td>
</tr>
<tr>
<td>total mammifères</td>
<td>284</td>
<td>100,0</td>
<td>3366</td>
<td>100,0</td>
</tr>
<tr>
<td>coq domestique (Gallus domesticus)</td>
<td>2</td>
<td>—</td>
<td>2</td>
<td>—</td>
</tr>
<tr>
<td>total oiseaux</td>
<td>2</td>
<td>—</td>
<td>2</td>
<td>—</td>
</tr>
</tbody>
</table>

Fig. 105 : Spectre de faune de Pratz (B. Clavel).
La composition de l’échantillon ne réserve pas non plus une place importante à la faune sauvage locale représentée par 1% des restes déterminés. De ce fait, la chasse comme mode d’approvisionnement carné joue un rôle marginal. La prédation des grands mammifères est attestée par quelques restes de Sanglier (n = 2) et de Cerf (n = 3) mais paraît très occasionnelle. L’intérêt voué aux cervidés ne semble pas exclusivement motivé par les besoins de l’approvisionnement carné et n’implique pas forcément l’abattage, comme en témoigne la découverte d’un fragment de bois de chute dans la couche Us.103. Les traces de scie relevées (fig. 106) indiquent le souci de valoriser cette ressource (pièces d’outillage ?).

La rareté ou l’absence totale de gibier apparait, durant tout le haut Moyen Âge, comme un marqueur fiable des contextes ruraux : les espèces chassées ne se rencontrent en quantité vraiment significative que sur des sites palatiaux ou aristocratiques (Yvinec 1993). Pour exemple, les sites de Develier-Courtételle et de Courtedoux-Creugenat n’ont livré respectivement que 0,5% et à peine 1% des restes déterminés.

Un état général nous montre la prédominance de la trilogie Bœuf-Porc-Caprinés. Cette combinaison domine systématiquement l’alimentation médiévale et reflète la nature principalement alimentaire de nos rejets. Les trois taxons représentent 95,3% des restes des espèces consommées. Ce chiffre n’est donc pas étonnant, mais il est malgré tout assez lourd. Parmi les principales espèces de rapport, le Bœuf paraît jouer ici un rôle prééminent8. Les proportions de ses restes sont majoritaires, quel que soit le mode de décompte, et attestent l’importance que revêt cet élevage du point de vue de sa contribution au régime carné. Le rôle du Porc et des petits ruminants n’est pas non plus marginal : leur exploitation semble développée en second ressort après le bœuf.

Au haut Moyen Âge, le Porc constitue en moyenne un tiers du cheptel et de l’apport carné de la triade (Bœuf-Porc-Caprinés [Audoin-Rouzeau 1997 a]). La variabilité de ses taux est fonction le plus souvent du milieu social. Il existe une nette opposition entre les milieux privilégiés, dont l’alimentation est basée sur le Porc et le Bœuf, et le milieu producteur consommant essentiellement du Bœuf (Yvinec 1997). Les observations effectuées sur les sites mérovingiens producteurs du nord de la France permettent de distinguer deux types de sites ruraux (fig. 107 [Yvinec 1997]). La première catégorie concerne les sites sur lesquels le Porc constitue entre 30% et 60% de la triade domestique, fournissant ainsi une quantité de viande non négligeable. Ce type d’économie est interprété par l’auteur comme une production autarcique destinée à satisfaire les besoins locaux en protéines animales. On y retrouve des sites picards, d’Île-de-France mais aussi du Nord-Pas-de-Calais et de l’Est. La seconde catégorie se démarque par une proportion de bovins comprise entre 50% et 80% du cheptel domestique. Elle n’a jusqu’alors été rencontrée qu’en Île-de-France et en Picardie. Sur ces sites, les troupeaux sont majoritairement constitués d’individus mâles âgés. L’exploitation de la force motrice, destinée aux travaux de labours, est clairement privilégiée. L’animal est au service d’une agriculture extensive (Yvinec 1997).

8. L’indigence des données invite à la prudence, le lot représente, faut-il le rappeler, à peine 7 kg de fragments osseux.
La comparaison des proportions des espèces rencontrées à Pratz avec celles de l'habitat rural de Courtedoux-Creugenat (Jura suisse, v°-vii° siècles) montre une prépondérance presque similaire en Caprinés et en Porcs (fig. 108). En outre, ces deux sites se distinguent nettement de Develier-Courtétel9 (Jura suisse) et du site plus éloigné de Genlis (Côte-d’Or [Clavel 1992]) par des proportions en restes de Bœuf bien inférieures. Concernant Genlis, il s’agit, qui plus est, de bêtes de réforme, caractéristiques des milieux ruraux, comme ceux de Picardie et d’Île-de-France où l’animal est au service d’une agriculture extensive.

Les résultats de Pratz et Courtedoux-Creugenat auraient pu traduire un indice de l’empreinte environnementale sur l’économie alimentaire. Deux sites de montagne, avec des proportions en Caprinés un peu plus conséquentes par rapport à leurs homologues des plaines. Mais les résultats de Develier-Courtétel n’autorisent pas à conclure à une influence strictement environnementale.

Sans certitude bien entendu, ces faits permettraient peut-être d’envisager que des populations similaires ou proches socialement soient à l’origine des dépôts de Pratz et Courtedoux-Creugenat d’une part, et de Develier-Courtétel et éventuellement de Genlis d’autre part. Rappelons que pour Courtedoux-Creugenat, les occupants du site rural bénéficiaient, selon les archéologues, d’un niveau social relativement aisé (Putelat 2007). La question des spécificités régionales et sociales se pose une nouvelle fois, sans qu’il soit possible d’y répondre.

À moyen terme, une meilleure connaissance des pratiques agraires, qui pourrait être obtenue en étudiant la faune issue d’un plus grand nombre de sites ruraux contemporains, devrait permettre d’envisager une éventuelle corrélation avec les pratiques alimentaires des différents habitats. Force est de constater qu’en l’état actuel de la recherche régionale, il ne s’agit que d’une vision très partielle qui demandera à être confrontée aux données à venir.

Enfin, parmi les autres espèces qui ont contribué au régime carné, figure la volaille. Son importance est difficile à évaluer. La faible part de l’avifaune reflète sans aucun doute ici davantage les conditions de conservation qu’une quelconque réalité. Hormis donc quelques restes de Coq domestique et quelques fragments de Sanglier et de Cerf, rien d’autre ne vient compléter l’alimentation de base fournie par le Bœuf, le Porc et les Caprinés.

Il faut néanmoins rappeler que la faune de Pratz présente des spécificités caractéristiques des niveaux de sol, avec les biais qui cela implique dans la représentation des espèces. L’examen de cet échantillon permet seulement d’émettre des suggestions et des hypothèses quant aux traits culturels et sociaux des habitants du site.

Sélection des animaux en fonction de l’âge

La sélection des animaux en fonction de l’âge contribue à préciser le mode d’approvisionnement carné et à en révéler les principales caractéristiques. À Pratz, les données concernant le choix des individus sont assez peu fiables. En effet, de par leurs effectifs réduits et surtout du fait d’un mauvais état de conservation, l’analyse des âges reste succincte.

Les observations réalisées sur la date des éruptions dentaires ou d’après le degré de l’usure, dans le cas du porc, sont néanmoins marquées par la part importante des jeunes animaux. Certaines observations effectuées sur des incisives de lait (supérieures ou inférieures) ont révélé la présence d’un porcelet de moins de 4 semaines. Les rares éléments de mandibule ont permis d’évaluer l’âge d’un individu de moins de 8 mois, un spécimen de moins de 1 an (âge donné par les incisives), et un autre de 19 à 21 mois. Ainsi, sur quatre individus, on relève un jeune de moins de 1 mois, deux spécimens de moins de 1 an et un subadulte de 19 à 21 mois. Ces résultats révèlent tout de même un choix de jeunes bêtes n’ayant pas atteint leur plein potentiel pondéral. Il est généralement admis que des individus abattus précocement sont plutôt consommés sous forme de viande fraîche. Cette habitude alimentaire peut traduire de surcroît un régime des plus aisés. Mais qu’en est-il avec ce petit échantillon? On ne peut se permettre, en effet, de tirer des conclusions hâtives avec aussi peu d’individus.
Pour ce qui est des estimations d’âges sur les caprinés, nous nous sommes heurtés, là aussi, à un manque de données. Les mandibules sont rares pour apprécier avec précision l’âge des animaux. La présence de deux spécimens âgés de 6 mois à 1 an et d’un individu de moins de 2 ans indique qu’on ne consomme pas là des bêtes de réforme. La maturité pondérale intervenant chez les moutons vers 2,5 ans (Vigne 1988), il s’agit probablement pour ce dernier d’un animal de boucherie. L’abattage des petits ruminants concerne aussi des animaux plus âgés (de moins de 4 ans et de moins de 6 ans).

Le Bœuf, quant à lui, est représenté par au moins cinq spécimens. La majorité des animaux sont tués et consommés avant ou vers 2 ans (deux d’entre eux vers 6 mois et un aux environs de 24 mois), et un autre plus âgé, entre 2 et 4 ans. Il ne s’agit pas pour ce dernier à proprement parler de viande d’animal de réforme.

Ainsi, les règles de sélection mises en œuvre dans le cas des bovidés comme des caprinés, pour autant qu’il soit possible d’en juger d’après les rares données recueillies sur les âges d’abattage, indiquent une tendance au prélèvement préférentiel des jeunes. La présence exclusive d’os de jeune Porc reflète, plus clairement que pour les deux autres espèces, un élevage tourné vers la production bouchère. Ces différents individus signalent donc l’aspect composite de l’approvisionnement carné, tourné surtout vers de la viande de bonne qualité : viandes tendres de porcelets, d’agneaux, de veaux et pièces d’animaux de boucherie. La présence néanmoins, parmi les restes de bovins, d’un individu âgé, suggère la consommation de viande de réforme plus médiocre.

Le statut d’artisan métallurgiste des occupants peut poser également la question de l’approvisionnement en ressources animales. S’agit-il aussi d’éleveurs, ou s’approvisionnent-ils au moins partiellement à l’extérieur ?

La présence d’un jeune porc mort peu après sa naissance laisse-t-elle augurer la pratique d’un élevage sur place ? Pour les autres animaux, l’affaire est différente dans la mesure où les pièces anatomiques appartenant à des individus périnataux sont absentes. Mais il ne s’agit aucunement d’une preuve de l’absence d’élevage de Bœufs et de Caprinés dans la mesure où la conservation différentielle est pour beaucoup dans la disparition des pièces fragiles de jeunes individus. D’autant également que, d’après certains indices comme la présence d’objets de mouture, les activités du site devaient être diversifiées, mêlant probablement agriculture, élevage et métallurgie...

Sur ce point, l’échantillon osseux a atteint ses limites dans la mesure où il nous est impossible de clarifier le problème. Le lot est d’autant plus lacunaire que l’ensemble des pièces anatomiques a subi des altérations réelles révélées par l’analyse des compositions anatomiques.

Distribution anatomique des ossements

La distribution anatomique des restes des principales espèces laisse, en effet, apparaître un déséquilibre qui concerne, dans tous les cas, la zone de la tête et des membres (tabl. 29) et cela quels que soient les lots étudiés. Les éléments du squelette axial (vertèbres et côtes) sont déficitaires aussi bien pour le Bœuf, pour lequel ces os sont pourtant plus résistants, que pour les Caprinés ou le Porc. Ces observations trahissent les effets combinés d’une conservation et d’une préservation différentielle assez mauvaise où les os très résistants – comme les membres et les dents – sont surreprésentés au détriment des éléments du rachis considérés comme plus fragiles. Ce type de répartition est en réalité caractéristique des gisements de zone rurale pour lesquels les conditions de conservation ne sont généralement pas satisfaisantes.

<table>
<thead>
<tr>
<th></th>
<th>NR</th>
<th>porc</th>
<th>bœuf</th>
<th>caprinés</th>
</tr>
</thead>
<tbody>
<tr>
<td>tête</td>
<td>80</td>
<td>56</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>rachis</td>
<td>7</td>
<td>12</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>côtes</td>
<td>8</td>
<td>21</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>ceintures</td>
<td>12</td>
<td>14</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>membres</td>
<td>38</td>
<td>53</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>bas de pattes (autopode)</td>
<td>14</td>
<td>36</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>total</td>
<td>159</td>
<td>192</td>
<td>133</td>
<td></td>
</tr>
</tbody>
</table>
La mise en pièces des animaux
Les possibilités d’analyse des techniques de découpe bouchère se trouvent également réduites. Celle-ci a laissé deux principaux types de traces : des incisions dues au passage de la lame d’un couteau et des entailles plus profondes occasionnées par un outil lourd qui pourrait correspondre à un couperet.
Un point important peut cependant être relevé : un centrum de vertèbre de caprinés et une vertèbre de porc semblent attester que la coupe de la colonne vertébrale, pour ces deux espèces, a été effectuée par une double fente de part et d’autre des noyaux vertébraux. Le détail importe beaucoup. Il faut savoir en effet qu’il existe deux manières de débiter une carcasse.
La première consiste à raser de part et d’autre les vertèbres par deux coupes longitudinales, sectionnant les têtes des côtes et les apophyses transverses des vertèbres (fig. 109). Cette façon de faire détache alors de l’animal sa chaîne de vertèbres qui peut ainsi être tronquée et récupérée en bouillon. C’est donc de cette manière que sont débités les animaux, Caprinés et Porcs, de Pratz. La deuxième formule consiste à couper le rachis en deux par le milieu. Elle produit alors deux demi-carcasses symétriques. Cette technique ne s’impose en réalité en Europe qu’assez tardivement. On l’utilise sur le Mouton pour la première fois au xi^e siècle à la Charité-sur-Loire (Nièvre [Audoin 1986]), à Orléans rue Saint-Flou au x^e siècle (Clavel et Robin, inédit) ou encore aux v^e-vi^e siècles plus au sud à Cardanne, dans les Bouches-du-Rhône (Audoin-Rouzeau 1997b). Ce procédé n’est en revanche pas adopté partout dans ces régions méridionales où la double fente semble prévaloir aux v^e-vif^e siècles.
La découpe par double fente paraît donc la seule en vigueur sur le site de Pratz. Ce détail est intéressant, car il permet d’ajouter une information supplémentaire concernant la répartition culturelle de cette technique dans le temps et l’espace (Audoin-Rouzeau 1997a).
Concernant le traitement des membres, les résultats sont assez lacunaires. On note néanmoins, pour le Bœuf, l’emploi probable du couperet pour fracturer les bas de pattes, peut-être pour la recherche de la moelle, ainsi qu’au niveau de la ceinture pelvienne pour le démembrement. Un humérus a été scindé en deux par un coup violent, asséné sur la zone distale de sa diaphyse. Une scapula (épaule) de Porc porte des traces fines dues au prélèvement de la viande. Lors de la découpe du morceau, en tranches, le couteau a laissé des fines entailles

Fig. 109 : Traitement du rachis et de la tête sur le site de Reims Médiathèque au xi^e siècle (Clavel 2009 absent de la biblio). Cet exemple illustre la double fente de part et d’autre des noyaux vertébraux permettant la levée de l’échine.
correspondant à la récupération de la viande. Au niveau des membres postérieurs de Porc, seuls plusieurs fragments d’un même fémur portent des traces. La consommation de pieds de Mouton semble être de mise. Le coup de feu observé sur la diaphyse d’un métapode (l’os du manche) laisse croire à cette pratique.

Résultats ostéométriques

Un métacarpe de Bovidé, seul os long entier retrouvé sur le site (tabl. 30) permet de reconstituer la taille de l’animal. Il s’agit tout d’abord d’un taureau. La distinction du sexe repose ici sur l’indice de gracilité (celui-ci est égal au rapport entre la largeur minimale de la diaphyse et la longueur totale de l’os). La hauteur au garrot estimée, de 108 cm (coefficient de Matolsci 1970), est nettement en deçà des tailles des animaux de Genlis (Côte-d’Or). Avec des valeurs moyennes de 120 cm estimées sur les métapodes, les bovidés de cet habitat sont bien plus grands.

En revanche, le taureau de Pratz a une hauteur similaire à la moyenne des bovidés du quart nord-ouest de la France : 108,7 cm pour les v°-ix° siècles (Clavel 2001). Cet animal est quand même de petit gabarit par comparaison avec les bovidés médiévaux d’autres pays d’Europe occidentale qui atteignent 112 cm de hauteur au garrot en moyenne (Audoin-Rouzeau 1991). Cette mesure, livrée par le site, présente l’intérêt d’apporter une donnée nouvelle concernant la question de la stature des bovidés dans cette région. Cet élément important vient ainsi compléter un dossier presque vide sur le sujet.

Tabl. 30: Ostéométrie du bœuf.

<table>
<thead>
<tr>
<th>bœuf</th>
<th>(mm)</th>
<th>LT</th>
<th>P Dt</th>
<th>P Dp</th>
<th>Dia Dt</th>
<th>Dia Dp</th>
<th>D Dp</th>
<th>Po Dt</th>
<th>Po Dp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secteur 3</td>
<td>Phal 1</td>
<td>51,5</td>
<td>25,4</td>
<td>22,7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Us. 31 / K6</td>
<td>Phal 1</td>
<td>55,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Us. 31 / K10</td>
<td>Phal 1</td>
<td>52,4</td>
<td>24,8</td>
<td>23,1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secteur 1</td>
<td>Mcpe</td>
<td>170,9</td>
<td>56,2</td>
<td>34,2</td>
<td>36,2</td>
<td>24,7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conclusion

L’une des principales difficultés, lors de cette étude, a été de trouver des points de comparaison régionaux, afin de tenter de valider les différentes hypothèses proposées. Or, les données archéozoologiques concernant les habitats du haut Moyen Âge dans l’Arc jurassien demeurent encore trop peu nombreuses. Cette démarche, qui tend à mettre en exergue d’éventuelles spécificités locales, n’est pas sans écueils. Nous avons tenté d’être vigilants, néanmoins, ces premiers résultats devront certainement être réexaminés à la lumière des études à venir. Malgré un échantillon relativement restreint, et donc des impasses analytiques évidentes, quelques-uns des traits sociaux et culturels de Pratz ont cependant été mis en évidence.

Sous certains aspects, la faune ne semble pas présenter les traits caractéristiques d’un régime de milieu favorisé. L’analyse a mis, en effet, en évidence l’aspect assez austère du menu des habitants, privés d’un apport conséquent de viande d’appoint. Mais les problèmes ayant affecté le dépôt sont probablement responsables de ces absences. Rapproché du site de Courtedoux-Creugenat (Jura suisse), Pratz apparaît comme très différent des établissements ruraux que l’on peut rencontrer par exemple dans le nord-ouest de la France. En comparant, en
revanche, Pratz au site rural bourguignon de Genlis ou au site suisse de Develier-Courtétel, plus proches géographiquement et qui semblent appartenir au groupe des sites à vocation agricole, on s’aperçoit que la table du forgeron du Curtillet ne témoigne pas pour autant d’un niveau de pauvreté obligeant à ne consommer que de la viande d’animaux de rebut. Bien au contraire, il semblerait même que la viande d’animaux de réforme ne représente qu’une très faible part des chairs consommées, contrairement au site producteur de Genlis. Agneaux, porcelets, veaux et viandes de boucherie figurent au menu avec probablement quelques pièces de sanglier, de cerf et un peu de volaille. Il ne s’agit donc pas des fastes alimentaires rencontrés sur les tables d’importants seigneurs laïcs ou ecclésiastiques, mais de la tablée un peu plus modeste d’un personnage d’un rang social probablement plus avantagé qu’à l’accoutumée en zone rurale.

Culture et environnement:
l’apport des macrorestes végétaux
J. Wiethold, M. Cabanis, J. Cayrol

En plus de ces parallèles régionaux, il semble intéressant de comparer les résultats carpologiques des établissements ruraux du Jura, situés en moyenne montagne (altitude de 400 m à 700 m) avec les résultats de leurs homologues de plaine les plus proches géographiquement, Genlis en Bourgogne (Ruas 1992b), Sermersheim Hintere Büen en Alsace (Peytreman, Wiethold 2012) et Vitry-sur-Orne ZAC de la Plaine en Lorraine (Bonnaire, Wiethold 2010).
L'échantillonnage et le corpus de prélèvements carpologiques

Un échantillonnage de prélèvements de sédiments a été réalisé dans les deux secteurs du site, l’un comprenant un bâtiment voué à des activités métallurgiques, l’autre, un vaste bâtiment résidentiel. Ces prélèvements ont été effectués sur un large espace occupé par plusieurs foyers de cet atelier artisanal (Us.21 ; 58 prélèvements), dans la travée excavée de ce dernier (Us.24 ; 2 prélèvements) et dans une zone de rejet en contrebas de ce bâtiment (Us.25 ; 2 prélèvements). Ceux du secteur résidentiel proviennent du remplissage du puits 114 (Us.116 ; 1 prélèvement) situé à l’intérieur de l’une des pièces, et d’une couche d’occupation au sein de l’annexe flanquée au bâtiment (Us.122 ; 3 prélèvements). La couche d’occupation Us. 21 a été échantillonnée à l’aide d’un carroyage où 58 prélèvements d’environ 0,5 à 1 l du sédiment ont été réalisés pour l’analyse carpologique. Ces prélèvements représentent un volume total de 66 l répartis sur cinq unités stratigraphiques différentes. Bien que cet ensemble ne corresponde pas aux normes actuelles de la carpologie, préconisant des volumes standards de 10-20 l par prélèvement (Jacomet, Kreuz 1999 ; Marinval 1999), il est important de souligner qu’il s’agit cependant du premier échantillonnage carpologique effectué de manière systématique sur un habitat du haut Moyen Âge du Jura français.

Traitement des prélèvements et détermination des macrorestes végétaux

Afin de récupérer les paléosemences, le tamisage a été réalisé par flottation simple à la main par brassage de sédiments. Une colonne de tamis aux mailles de 0,5 mm, 1,0 mm et 2,0 mm a été utilisée. La décantation répétée des restes organiques flottants a permis de récupérer la fraction carbonisée. Tous les refus de tamis ont été séchés à l’air libre et triés ensuite à la loupe binoculaire avec un grossissement de 7 ou 10 fois et, pour les observations plus précises, un grossissement de 40 fois. L’identification des diasporés a été initialement réalisée lors de la première étude par J. Cayrol10 avec la collection des semences actuelles et fossiles et les atlas d’identification appartenant à K. Lundström-Baudais (†). La révision des macrorestes de l’étude de 2001 et l’analyse des trois autres prélèvements ont été effectuées au laboratoire archéobotanique de l’Inrap Grand Est-Nord à Metz. La détermination de restes a été effectuée avec l’aide de la collection de l’un des auteurs (J. Wiethold) et des ouvrages de détermination carpologiques (Beijerinck 1947 ; Brouwer, Stählin 1955 ; Cappers et al. 2006 ; Jacomet et al. 2006). Les décomptes de restes sont exprimés en nombre minimum d’individus (NMI). Lorsqu’il s’agit de fragments, par exemple de coques de noix, un NMI hypothétique a été estimé.

La conservation de macrorestes végétaux

Le croisement de ces données avec les autres disciplines empruntées aux sciences naturelles, l’anthracologie pour le site (cf. Mougin, ce volume), et la palynologie à une échelle plus large (Gauthier 2004) élargit les données carpologiques à différents milieux, naturels ou anthropisés, et à la végétation aux alentours de l’implantation mérovingienne.

Résultats et interprétation

La répartition des macrorestes végétaux
Les 66 prélèvements carpologiques ont fourni un total de 188 macrorestes végétaux carbonisés, une fructification d’un champignon et deux coprolithes de rongeurs, tous également carbonisés (fig. 110, tabl. 31). La densité moyenne en restes est de 2,89 par litre pour l’ensemble du corpus de prélèvements. On constate l’absence de toutes concentrations de graines résultant d’éventuels stocks de récolte ou de refus de traitement de céréales lors d’opérations après récolte. Les densités moyennes faibles, en dessous de trois restes par litre, représentent la « pluie accidentelle » ou « bruit de fond » de macrorestes dans un habitat.

Les restes végétaux représentent 22 taxons différents. Les plantes cultivées ont fourni 138 restes (77,1 % du total, sauf fragments de la matière organique brûlée/OAC, champignons et coprolithes), les fruits sauvages: 4 restes (2,2 %), les adventices: 11 restes (6,1 %) et les autres plantes sauvages: 26 restes (14,5 % ; fig. 111). Cette répartition aux grands groupes fonctionnels est typique d’un spectre des restes carbonisés d’un habitat. Les restes de plantes cultivées ont plus de chance d’être carbonisés lors des diverses activités domestiques et artisanales. Parmi les plantes cultivées, les restes céréaliers – les objets amorphes carbonisés de type pain/galette/bouillie étant exclus – sont les plus abondants avec 127 restes. Ils totalisent 92 % des restes de plantes cultivées. Les légumineuses cultivées sont représentées avec 5,36 % et les fruits cultivés avec 2,68 %. 16 diaspores et 2 fragments de tiges étaient non déterminables, soit un taux d’indéterminés de 9,42 %.

Les résultats carpologiques sont présentés par grands groupes fonctionnels: les céréales en premier lieu, les légumineuses cultivées, les fruits cultivés et sauvages et, enfin, les adventices et toutes les autres plantes cultivées.

Céréales
Le corpus de restes céréaliers se compose de 118 grains (caryopses), neuf fragments de tiges et neuf objets amorphes carbonisés du type pain/galette/bouillie (fig. 111, tabl. 31). 34 caryopses de céréales sont fortement fragmentés, corrodés ou alvéolés, une situation qui entraîne leur mauvaise conservation et une détermination peu précise (28,8 % du total de grains, soit 25 % de restes céréaliers). Les neuf objets amorphes carbonisés (OAC) du type pain/galette/bouillie ont été groupés parmi les restes céréaliers, car il s’agit probablement de préparations alimentaires à base de céréales.

Les céréales constituent les aliments de base. Ils ont été utilisés pour la panification, la préparation des bouillies et de gruaux, comme complément alimentaire pour les potées et les soupes, sans oublier le fourrage pour le bétail pour certaines d’entre elles (Avoine, Orge vêtue…).

La céréale la plus abondante et la plus fréquemment reconnue est le Millet commun (Panicum miliaceum; fig. 111 et Xa) avec 50 caryopses, soit 36,2 % de plantes cultivées. Il est attesté dans quatre des cinq zones échantillonnées et

<table>
<thead>
<tr>
<th>structure</th>
<th>21</th>
<th>24</th>
<th>25</th>
<th>116</th>
<th>122</th>
</tr>
</thead>
<tbody>
<tr>
<td>zone</td>
<td>atelier</td>
<td>atelier</td>
<td>atelier</td>
<td>habitat</td>
<td>habitat</td>
</tr>
<tr>
<td>volume brut en litres</td>
<td>carrés</td>
<td>carré F6</td>
<td>carré J7</td>
<td>puits</td>
<td>couche</td>
</tr>
<tr>
<td>nb de prélèvements</td>
<td>58</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>nom latin</th>
<th>nom vernaculaire</th>
<th>0,5 mm</th>
<th>0,5 mm</th>
<th>0,5 mm</th>
<th>0,5 mm</th>
<th>0,5 mm</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panicum miliaceum</td>
<td>millet commun</td>
<td>37</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td></td>
<td>44</td>
</tr>
<tr>
<td>cf. Panicum miliaceum</td>
<td>millet commun</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Triticum sp.</td>
<td>blé</td>
<td>10</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>Avena sp.</td>
<td>avoine</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Triticum aestivum l.s./durum/turgidum</td>
<td>blé tendre/blé dur/blé barbu</td>
<td>8</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Hordeum vulgare vulgare</td>
<td>orgue vête polystique</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Hordeum vulgare</td>
<td>orgue polystique</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hordeum cf. vulgare</td>
<td>orgue polystique</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triticum monococcum, bases de grume</td>
<td>engrain</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>cf. Secale cereale</td>
<td>seigle</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cerealia</td>
<td>céréales</td>
<td>23</td>
<td>1</td>
<td>2</td>
<td>8</td>
<td></td>
<td>34</td>
</tr>
<tr>
<td>Cerealia, frgm. de tiges</td>
<td>céréales</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>objets amorphes carbonisés</td>
<td>pain/galette/bouillie</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>légumineuses cultivées</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cf. Pisum sativum</td>
<td>pois</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Vicia faba var. minor</td>
<td>fèverole</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Leguminosae sativae indeterminata</td>
<td>légumineuses cultivées indét.</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>fruits cultivées</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Juglans regia</td>
<td>noyer royal</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Prunus insitita</td>
<td>prunier</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>fruits sauvages</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corylus avellana</td>
<td>noisette</td>
<td>2</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Prunus spinosa</td>
<td>prunelle</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>plantes sauvages</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromus cf. secalinus</td>
<td>brome seigle</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>cf. Echinocloa crus-galli</td>
<td>pied-de-coq</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Galeopsis bifida/tetrahit</td>
<td>galéopse bifide/tétrahit</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Polygonum lapathifolium agg.</td>
<td>renouée à feuilles de patience</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Sherardia arvensis</td>
<td>shérardie des champs</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>cf. Sherardia arvensis</td>
<td>shérardie des champs</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Arrhenatherum elatior ssp. bulbosum</td>
<td>fromental, bulbulles</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Veronica sp.</td>
<td>versonique</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Plantago lanceolata</td>
<td>plantain lanciéloé</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>autres</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abies alba, aiguilles</td>
<td>sapin</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Indeterminata</td>
<td>indéterminés</td>
<td>16</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Indeterminata, tiges</td>
<td>indéterminés</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>champignon, fructifications</td>
<td>champignon</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>coprolithes</td>
<td>coprolithes</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>total</td>
<td></td>
<td>147</td>
<td>7</td>
<td>6</td>
<td>7</td>
<td>24</td>
<td>191</td>
</tr>
</tbody>
</table>
domine le corpus carpologique provenant des couches Us.21 et 24 du secteur artisanal (tabl. 31). Il n’est pas attesté dans la couche d’occupation Us.122 du secteur résidentiel de l’habitat, mais cette couche n’a été étudiée que par un seul prélèvement de 3 l du sédiment.

La part importante du Millet commun est une spécificité de l’établissement de Pratz. Partout ailleurs, le Millet commun se trouve parmi les céréales cultivées, mais ses pourcentages restent plus bas, comme dans l’habitat du haut Moyen Âge de Develier-Courtételle dans le Jura suisse. En contexte humide, les glumelles du Millet commun sont généralement bien conservées, contrairement aux assemblages des restes carbonisés. À Grozon le Château Maillot, site
d’extraction du sel au haut Moyen Âge dans le Jura, une couche humide des vi-viie siècles de notre ère a fourni une quantité remarquable de glumelles de Millet commun (Wiethold 2013).

Pour les sites mérovingiens de plaines du nord-est de la France actuelle, le Millet commun est généralement rare dans les assemblages de macrorestes (Bonnaire, Wiethold 2010). Un fond de cabane et un fossé mérovingien à Genlis, en Côte-d’Or, ont cependant livré quelques caryopses (Ruas 1992b, 2010). Le millet est également présent en faible quantité à Marnay/Pont-sur-Seine les Gravières (Bonnaire, Wiethold 2010), site daté des vie-xiie siècles, comprenant des fonds de cabane, des silos, des fosses, un four et des fosses d’extraction. L’habitat de Semersheim Hintere Buën, dans le Bas-Rhin, étudié de manière représentative par la carpologie, a livré quelques rares glumelles provenant des deux puits, datés de la fin du vie et du début du xie siècle (Bonnaire, Wiethold 2010; Peytremann, Wiethold 2012). Le Millet commun a été repéré de manière générale dans les sites du haut Moyen Âge au nord et au sud de la France (Ruas 2010), mais cette céréale ne domine pas les spectres carpologiques, contrairement à ce que l’on constate à Pratz.

Le Millet commun figure dans le cortège des céréales les plus importantes à partir de l’âge du Bronze. Dans le Jura, le Millet commun était particulièrement important dans des offrandes alimentaires provenant d’un dépôt funéraire gallo-romain sur le site de mausolée de Chavéria En Rivière, daté à la fin du vie siècle de notre ère (Pradat 1995; Joan 2001). Les caryopses du Millet commun sont facilement déterminables par leur forme, leur taille et par l’épaisseur et la forme de leur empreinte d’embryon sur la partie dorsale du grain. Les millets cultivés à Pratz, seul le Millet commun a été mis en évidence - sont des cultures d’été typiques. Ils possèdent l’avantage d’un temps de mise en culture et de développement relativement court. Au printemps, les grains de Millet peuvent également être semés sur des surfaces sur lesquelles les céréales d’hiver n’ont pas encore levé. Les grains sont généralement stockés dans les glumelles, leurs enveloppes protectrices (Lundström-Baudais, Bailly 1995; Lundström-Baudais et al. 2002), car une fois dé cortiqué, il semble se gâter si rapidement qu’il ne se conserverait pas d’un jour à l’autre (Sigaut 1988; Bouby 2003). Leur traitement nécessite des étapes de décorticage et de broyage. Les millets ne sont pas pani fiables. Ils sont essentiellement consommés dans l’alimentation humaine en sous la forme de bouillies, de potées et d’autres préparations culinaires semi-liquides. Les caryopses de Blé (Triticum sp.), non identifiés à l’espèce, car trop érodés, se placent en seconde position avec un total de dix grains, soit 10,2 % de restes céréaliers (fig. 111). Ils sont attestés sur quatre des cinq zones étudiées (tabl. 31).

Le Blé nu (Triticum aestivum l.s./durum/turgidum) et l’Engrain (Triticum monococcum) sont les seules espèces du Blé attestées dans le corpus. Neuf caryopses sont attribués au Blé nu et un seul élément de la balle, une base de glume, témoigne de la présence de l’Engrain. En regard de cette abondance du Blé nu, il semble très probable que les caryopses identifiées Triticum sp. appartiennent également au Blé nu. Malheureusement, les caryopses du Blé nu ne sont pas précisément déterminables si des fragments de rachis sont absents du corpus. Les grains du Blé nu, morphologiquement peu significatifs, peuvent appartenir à l’espèce hexaploïde, le Froment Blé tendre Triticum aestivum l.s., ou à l’une des espèces tétraploïdes, le Blé dur Triticum durum et le Blé barbu Triticum tur gidum. Quoi qu’il en soit, pour les périodes médiévales, la culture du Froment/Blé tendre Triticum aestivum s.l. (fig. Xb) paraît la plus probable.

Le Froment a besoin d’un sol fertile et profond, et d’un climat favorable caractérisé par de l’humidité au printemps et de la chaleur en été. Le Blé nu réclame plus
de chaleur que le Seigle et l'Orge. Il est principalement cultivé comme céréale d’hiver, semé en automne et récolté huit à dix mois plus tard sur l’été de l’année suivante. La variété d’hiver a pu être semée au printemps, lors de circonstances difficiles : semaines d’hiver pourries, gelées, etc.

De toutes les céréales identifiées, c’est la plus exigéante. Les conditions climatiques et édaphiques favorables à sa culture correspondent globalement à la région jurassienne, mais les plateaux de moyenne altitude du Jura sont plus propices à la culture de céréales plus robustes, par exemple de céréales d’été, comme l’Orge vêtue polystique et le Millet. Concernant les céréales d’hiver, la culture du Seigle est plus appropriée – cette espèce étant plus robuste – à un climat plus froid et plus humide.

Le Froment Blé tendre est une céréale bien panifiable. Il possède des qualités pour produire de la farine blanche utilisée dans la confection de pains et de pâtisseries. Au Moyen Âge et au début de l’époque moderne, le pain blanc préparé avec la farine du Froment était considéré comme meilleur, même s’il est un peu moins nutritif et fortifiant que le pain noir au Seigle. Le Froment était aussi plus cher et sa commercialisation a joué un rôle important dans l’économie agricole du Moyen Âge.

À Pratz, l’Orge polystique (Hordeum vulgare) est attestée par seulement trois caryopses; deux des trois grains sont mal conservés. Le seul caryopse mieux conservé indique, par sa forme rhomboïde et le sillon ventral bien marqué, la présence de la forme vêtue de l’Orge polystique. L’Orge polystique vêtue est, depuis les périodes préhistoriques jusqu’au Moyen Âge, principalement une céréale d’été, bien que des variétés puissent aussi être cultivées comme céréale d’hiver, donc semées en automne. La culture d’été signifie que les grains étaient semés au printemps et la récolte s’effectuait en été. L’Orge vêtue demande peu d’éléments nutritifs. Sa culture évolue aussi bien sur des sols lourds et fertiles que sur des sols calcaires ou sableux légers. Cette céréale est également peu exigeante du point de vue des conditions climatiques. Décortiquée, l’Orge sert de complément alimentaire dans des soupes et des potées. Elle peut être utilisée en ragoût et dans d’autres préparations semi-liquides comme la bouillie et les gruaux de céréales. En revanche, l’Orge vêtue n’est pas très appropriée pour la
panification. La fabrication du pain, en mélange avec la farine de blés, est néanmoins possible. Souvent, durant les périodes de disette, la farine d’orge, comme d’autres farines, a été mélangée pour faire du pain.

L’Engrain (*Triticum monococcum*; fig. Xc) est seulement attesté sur la seule base de glume dans le secteur à vocation artisanale (Us.21). Comparées au Blé nu, les récoltes de l’Engrain sont relativement faibles, car l’épillet fertile de l’Engrain contient seulement un grain fertile (sauf pour les variétés à deux grains). Néanmoins, sa robustesse contre les détériorations climatiques et les utilisations variables des ses tiges longues, par exemple pour le vannage et dans la viticulture pour attacher les vignes dans leurs porteurs en bois, a favorisé sa culture dans quelques régions. Ses avantages ont favorisé sa culture en particulier dans les régions montagneuses au climat plus rude. Les résultats obtenus à Develier-Courtételle la Pran ont bien confirmé sa culture pour le haut et le bas Moyen Âge dans le Jura (Brombacher 1997, 2008).

Les 23 grains de céréales indéterminables sont sans doute majoritairement attribuables aux blés, car les caryopses fragmentés de l’avoine et de l’orge sont, dans la plupart des cas, encore déterminables.

Légumineuses cultivées

Fruits cultivés

Seuls les restes imbibés provenant de sites ou de couches humides du haut Moyen Âge élargissent nos connaissances sur les jardins et les fruits plantes cultivées (par exemple en Allemagne du Sud-Ouest [Rösch 2008]).

Les fruits sauvages

Plantes messicoles et autres plantes sauvages
11 macrorestes végétaux proviennent de plantes sauvages. Ils représentent huit taxons, dont un taxon identifié au genre et sept au niveau de l’espèce. Plusieurs aiguilles de Sapin (Abies alba) illustrent la végétation forestière classique de cette altitude du Jura, qui caractérise l’environnement de Pratz. La plupart des espèces sauvages mises en évidence sont des adventices de cultures. La seule espèce attestée, avec de plus une graine isolée, est le Brome seigle (Bromus secalinus), plante messicole de céréales d’hiver (tabl. 31). Les caryopses de cette graminée sauvage possèdent environ la même taille que les grains de céréales et le nettoyage de récolte s’avère difficile. Le Pied-de-coq (Echinochloa crus-galli), à graines plus petites, est un adventice de cultures d’été. L’espèce a probablement accompagné les cultures du Millet commun et ses caryopses sont presque de la même taille. La Shérardie des champs (Sherardia arvensis) est également une mauvaise herbe des cultures céréalières et des bords de chemins (fig. Xe). L’espèce est fréquente sur des sols limoneux et calcaires. L’espèce est considérée comme archéophyte, originaire de la région méditerranéenne. Sa diffusion vers le nord est reliée au transport et au commerce des grains à partir des époques protohistoriques.

La distribution spatiale de restes végétaux
La répartition des macrorestes résulte de la méthodologie de prélèvement employée: il n’est donc pas étonnant que le corpus le plus riche corresponde à l’échantillonnage spatial exhaustif de l’Us.21 du secteur artisanal. Les 58 prélèvements ont fourni 147 carporestes, soit 76,96 % du total de corpus de Pratz. Ces restes appartiennent aux 22 taxons identifiés, dont 10 cultivés et dénombrés. Les densités de restes dans les prélèvements, reliées à plusieurs foyers distincts de ce secteur du site, sont trop faibles pour les interpréter comme des structures de torréfaction de céréales. En effet, dans le cas contraire, elles seraient beaucoup
plus riches en macrorestes carbonisés. L'Us.24, qui correspond à la partie exca-
vée du bâtiment artisanal, est représentée dans le corpus par deux prélèvements,
une part pauvre en restes. Un volume assez faible de 5 l a livré sept graine,
correspondant à seulement deux taxons : le Millet commun (*Panicum miliaceum*) et
la Noix (*Juglans regia*). Le prélèvement de l'Us.25 – la zone de rejet en contre-
bas de ce bâtiment – a fourni six autres restes appartenant à cinq taxons, dont
des grains de Millet, de Blé et d'Avoine, et un fragment de coque de Noix. Le
secteur résidentiel n'a été étudié que par deux prélèvements. Le remplissage du
puits (Us.116) a fourni sept restes de six taxons différents. Il s'agit des céréales
- Millet, Blé, Froment et l'Avoine - et d'un fragment de coque d'une Noisette.
Trois prélèvements d'une couche d'occupation située dans l'annexe qui flanque
le bâtiment résidentiel (Us.122) contiennent principalement des caryopses
de céréales : le Blé, l'Orge vêtue, probablement le Seigle (*cf. Secale cereale*) et
quelques caryopses indéterminables. Une graine du Plantain lancéolé s'y ajoute,
an espèce des prés et de pâturages, mais qui pousse également dans les cultures
clairsemées.
L'échantillonnage carpologique a donc été concentré essentiellement sur le sec-
teur artisanal et non systématiquement sur l'ensemble de l'établissement méro-
vingien il ne permet donc pas de tirer des conclusions sur la distribution spatiale
des espèces.

Conclusion

Bien que réalisée sur un corpus de restes réduit, l'analyse carpologique de l'éta-
blissement de Pratz permet cependant d'apporter des éléments sur l'agriculture
du haut Moyen Âge et l'environnement paysager du site. Elle est caractérisée
par une polyculture de céréales (Millet, Blé nu/Froment, Avoine, Orge vêtue,
Engrain et probablement aussi Seigle) et de légumineuses (Féveroles, Pois). Le
Millet commun est la céréale dominante à Pratz, particularité qui ne correspond
pas aux autres habitats mérovingiens situés dans les plaines, plus favorables à
l'agriculture et qui placent le Froment au premier rang des espèces céréalières.
Le Millet commun se cultive exclusivement comme céréale d'été. Cette plante à
petits grains est semée au printemps, car elle est sensible aux gelées. Il est fréquent
de retrouver sur les sites archéologiques des agglomérats de Millet commun carboni-
sés dont l'origine est inconnue : préparation culinaire ou amas accidentel.
M.-P. Ruas a trouvé de ces amas sur le gisement médiéval de Fraissinet dans
le Sud-Ouest, près de Toulouse (Ruas *et al*. 1985). Elle a aussi identifié des
glumelles de Millet dans un dépotoir carolingien à Saint-Germain-des-Fossés
dans l'Allier, indiquant que l'on stockait cette céréale avec sa balle (Ruas 2000).
Cette céréale reste anecdotique dans l'habitat rural mérovingien de Develier-
Courtételle le Pran, hameau le plus proche géographiquement, mais situé dans
une large vallée et étudié de manière très exhaustive (Brombacher 1995, 1997,
du Jura. Effectivement, le Millet prospère assez bien dans des régions clémentes
où la culture de la Vigne croît également. Cependant, la situation géographique
du site de Pratz, caractérisé par un climat plus rude en comparaison avec de
plus basses altitudes, n'empêche pas sa culture locale. En effet, le développe-
ment rapide du Millet a pu favoriser sa culture à partir de la fin du printemps,
avec une récolte en août. Le climat du Jura est de type continental, contrasté,
avec des saisons bien marquées. La chaleur de l'été est suffisante pour cultiver le
Millet dans les environs de l'établissement de Pratz, d'autant plus facilement si
les cultures sont protégées par des haies.
Les textes ne mentionnent que très rarement cette céréale, le Millet commun y apparaît comme une culture résiduelle de l’économie céréalière du Moyen Âge (Leturq 2004). Le Millet était probablement moins commercialisé et plus cultivé pour alimenter une population rurale. Cette céréale n’est pas panifiable, mais elle est principalement consommée sous la forme de bouillie et de gruau, des préparations alimentaires typiques pour des sociétés rurales du Moyen Âge. En comparaison avec les sites lorrains et champenois du haut Moyen Âge, le Millet commun semble d’avoir occupé une place plus importante dans le Jura, comme en témoignent les résultats obtenus à Chavéria En Rivièr, à Grozon le Château Maillot et à Pratz.

L’Amidonnier disparaît à la fin de l’Antiquité tardive et au début du haut Moyen Âge, alors que l’Épeautre et l’Engrain persistent jusqu’à l’époque moderne, mais leur importance baisse dans la plupart des sites.

Sur les sites médiévaux français, les légumineuses constituent le deuxième groupe de grains alimentaires. La Féverole, le Pois, la Lentille et la Vesce sont présents de façon permanente entre le Haut-Empire et le bas Moyen Âge. La Vesce cultivée s’ajoute, dans quelques régions, au cortège de légumineuses cultivées. Le Pois connaît une nette progression jusqu’au bas Moyen Âge en France (Ruas 1992a).

Les légumes et les fruits cultivés et cueillis complètent la nourriture végétale. Les légumes ne sont pas attestés à Pratz, car leurs restes ne se conservent normalement pas par carbonisation. Dans l’assemblage de carporestes, le Noyer et le Prunier sont des arbres fruitiers cultivés, certainement présents dans le jardin de la ferme ou aux abords. Au contraire, les noisettes et les prunelles sont des fruits de cueillette. Ils poussent fréquemment sur les lisières de champs et de forêts et leur récolte a sans doute amélioré l’alimentation des habitants.

L'étude anthracologique

V. Mougin

Les charbons de bois archéologiques, longtemps étudiés sur les gisements préhistoriques, sont de plus en plus pris en compte sur les sites du haut Moyen Âge, notamment dans le Jura suisse. En contexte domestique, moyennant certaines conditions de dépôt et d’échantillonnage, les charbons sont considérés comme le résultat d’une collecte aléatoire, autrement dit sans sélection apparente du combustible ligneux. Dans ce cas, ils peuvent être interprétés en terme de paléécologie et la liste des taxons ainsi que leurs proportions relatives sont susceptibles de refléter le milieu d’approvisionnement en bois (Chabal 1997; Chabal et al. 1999). Au potentiel de reconstitution environnementale des assemblages anthracologiques s’ajoute la dimension ethnobotanique qui nous renseigne sur les relations établies entre l’Homme et le milieu végétal, notamment dans le cadre d’activités spécialisées comme la métallurgie. Au cours d’une étude anthracologique, ces deux approches sont complémentaires. En effet, les charbons issus du bois de feu domestique, à l’intérieur d’un habitat par exemple, correspondent davantage à un enregistrement fiable de la composition des peuplements forestiers, alors que les usages spécifiques du bois concernent plutôt les techniques, les savoir-faire et l’économie du combustible, en nous informant indirectement sur les boisements présents alentour. Les études menées dans les Pyrénées ont largement montré l’intérêt de l’anthracologie dans la compréhension des liens tissés entre forges et forêts (Bonhôte 1998; Dubois 1992; Métailié 1992; Woronoff 1990).

En ce qui concerne l’établissement de Pratz, l’intérêt de l’étude anthracologique repose sur la présence de deux ensembles de charbons de bois provenant de contextes différents (domestique et artisanal), mais ayant eu lieu sur un même territoire. Il est alors possible d’une part d’appréhender l’image du milieu environnant reflétée par les charbons prélevés dans le bâtiment résidentiel, et, d’autre part, à travers les résidus carbonisés de l’atelier de forge, de renforcer nos connaissances sur la métallurgie mérovingienne, à savoir les modalités de collecte du combustible (sélective ou aléatoire) et d’apprécier les conséquences d’une telle activité sur l’espace forestier. Ces deux approches ont été menées en confrontant les résultats de l’anthracologie à d’autres données environnementales. L’objectif étant de renseigner les liens tissés entre des communautés du haut Moyen Âge en Franche-Comté et leur territoire agricole, sylvicole et métallurgique.

Protocoles d’analyse

Adapté à la dispersion des éléments et à la surface fouillée, sur le site de Pratz, l’échantillonnage de prélèvements de sédiment a été effectué par quart de mètre carré au sein de l’habitat résidentiel, de la forge et du dépotoir métallurgique. Le sédiment a été tamisé sur le terrain à la maille de 0,35 mm et les résidus carbonisés – graines et charbons – ont ensuite subi un second criblage par flottation, dans une colonne de tamis à trois mailles (2 mm, 1 mm et 0,5 mm). Une partie des charbons de bois étudiés provient de ces lots finement tamisés. Afin de limiter les biais induits par les différentes mailles utilisées, la taille de 4 mm n’a pas été retenue, et les charbons encore contenus dans le sédiment ont été criblés par aspersion à la maille de 2 mm. Une fois lavés, ils sont laissés à sécher sur du
papier journal, en prenant soin de les tenir à l'écart des rayons du soleil. Ils sont ensuite stockés en sachets étiquetés selon la provenance de l'échantillon.

La détermination des charbons s'appuie sur la structure du tissu végétal, en étudiant ses caractéristiques suivant les trois plans morphologiques du bois : le plan transversal, le plan longitudinal radial et le plan longitudinal tangentiel. L'examen des trois coupes s'effectue au microscope optique à réflexion (grossissements de 50 à 600 fois), à partir de cassures fraîches effectuées à la main. Des ouvrages d'anatomie microscopique du bois (Schweingruber 1988, 1990) et la collection de référence du laboratoire de Chrono-Environnement de Besançon aident, par analogie, à déterminer les taxons rencontrés. L'identification taxonomique a par ailleurs été complétée par une observation du plan ligneux. La vitrification, les fissures de retrait, la présence d'écorce et de bois de réaction ont été notées dès que possible. De plus, lorsque la taille des charbons le permettait, l'évaluation des calibres du combustible a été réalisée à partir des rayons de courbure des cernes de croissance.

Par souci d'homogénéité, la nomenclature latine a été retenue pour nommer les taxons identifiés. Selon l'essence, l'état et la taille du charbon, la précision de l'identification taxonomique est souvent l'espèce (ex. : Fagus sylvatica). Cependant, comme la détermination n'atteint pas toujours ce rang de classification, des désignations particulières sont indispensables. Une identification limitée au genre est alors indiquée Ulmus sp. et une incertitude entre deux taxons notée ainsi (Abies alba/Juniperus communis). En raison d'une trop petite taille, d'un état dégradé ou vitrifié, les charbons indéterminés sont indiqués par la mention « indéterminé ». Ils n'entrent pas dans les calculs de proportions entre les essences identifiées.

Présentation du corpus et résultats

L'analyse anthracologique de l'établissement de Pratz a permis de déterminer environ 600 charbons, révélant la présence d'une quinzaine d'essences ligneuses (tabl. 32). L'intérieur du bâtiment résidentiel, échantillonné en plusieurs points, recèle plus de 82 % des charbons identifiés. La zone d'atelier, quant à elle, représente 11 % des effectifs. Enfin, le foyer de forge et le dépotoir situé en aval du bâtiment artisanal comptent respectivement 2 et 5 % des éléments déterminés. Les effectifs sont donc très variables selon la nature des dépôts. Ainsi, ces derniers revêtent une valeur informative différente qui nous conduit à les distinguer selon la nature des renseignements qu'ils nous livrent. Ces ensembles offrent la possibilité de comparer des assemblages floristiques mis en évidence au sein de différentes structures spécifiques et d'apprécier l'environnement végétal ligneux du site.

Le combustible métallurgique

L'analyse anthracologique du contenu du foyer 18 a porté sur la détermination de 12 charbons. Elle révèle la présence de 4 taxons, dont 75 % de Hêtre (Fagus sylvatica). Apparaissent également les Pomoïdées (Pomoideae), le Sorbier (Sorbus sp.) et le Frêne (Fraxinus excelsior), chacun étant représenté par un seul fragment. Dans le cadre de la métallurgie, le charbon de Hêtre est très apprécié, car ses propriétés énergétiques permettent une lente montée et un maintien à très haute température des fours (Rameau et al. 1989). Des témoignages ethnographiques et des études menées sur les proto-industries du nord-ouest de la France démontrent un recours préférentiel au charbon de Hêtre (Bouchey 1933;
Bien que ces éléments de comparaison concernent essentiellement des opérations de réduction du minerai, le Hêtre est utilisé tout au long de la chaîne opérateure de transformation du métal. La relation qui unit les forges et le combustible métallurgique peut aussi être illustrée par l’activité de charbonnage. L’analyse anthracologique de charbonnières dans le Pays basque français a montré l’utilisation systématique du hêtre dans les secteurs où la ressource abonde (Mougin 2002, 2004).

Les Pomoïdées et le Sorbier fournissent aussi un charbon apprécié. Celui produit par l’Alisier blanc (*Sorbus aria*) est même considéré comme équivalent au charbon de Hêtre d’un point de vue énergétique (Rameau *et al.* 1989). Toutefois, les caractères anatomiques des différentes espèces de *Sorbus* ne permettant pas la distinction, la détermination n’a pas dépassé le rang du genre.

Le dernier taxon identifié dans le foyer de forge est le Frêne (*Fraxinus excelsior*). Cette essence produit aussi un charbon de qualité, sans pour autant atteindre les propriétés du Hêtre, habituellement qualifié de charbon métallurgique. Un aspect vitrifié a été observé sur ce fragment. Les raisons de la vitrification sont variables : soit le combustible a été chauffé à très haute température (au-delà de 600°C), soit le bois a été mis au feu encore vert, ou alors le charbon a subi plusieurs cuissons (Fabre 1996 ; Théry-Parisot 2001). Ces déformations anatomiques peuvent aussi renvoyer aux caractères des charbons produits en charbonnières, ayant donc subi une carbonisation préalable aux travaux de forge.

L’analyse anthracologique de l’atelier porte sur la détermination de 62 charbons issus de 10 échantillons répartis au sein de l’espace intérieur. Malgré la faible quantité des effectifs disponibles (un fragment par échantillon dans certains cas), on observe une certaine richesse floristique dans la forge puisque le spectre compte 10 taxons. L’ensemble des prélèvements effectués a été figuré par secteur fouillé afin d’accroître la lisibilité et la pertinence des assemblages anthracologiques (tabl.33). Le premier constat qui s’impose est la forte représentation de l’Orme (*Ulmus*). Présent dans la moitié des 10 prélèvements réalisés dans l’atelier, il apparaît dans de fortes proportions (plus de 27 %), devant le Hêtre (24 %) et les Pomoïdées (environ 20 %). Les propriétés énergétiques du charbon produit à partir de ces espèces pourraient à elles seules expliquer les proportions importantes de ces essences en tant que combustible métallurgique. Toutefois, en raison de la grande disparité des échantillons en termes quantitatifs, la comparaison quantitative entre les prélèvements s’avère délicate.

L’image d’un tel paysage peut aussi être évoquée par l’analyse du dépotoir situé à l’aval de la forge. En effet sur les cinq taxons mis en évidence, le Noisetier (*Corylus avellana*) représente l’essentiel des éléments identifiés (82,8 %). Cette espèce, qui produit un charbon dégageant beaucoup de chaleur et durant longtemps au feu (Rameau *et al.* 1989), témoigne de l’existence d’espaces ouverts en phase de recolonisation arborée. Le Sapin, les Pomoïdées, le Sorbier et le Bouleau complètent le spectre anthracologique. Le Bouleau (*Betula*), bon
Abies alba
%

%

3,4 24 82,8

3

100

1

3,4

dépotoir

Us.22 L2+L3

total

1 8,33

9 75,0

foyer 18

P. 97 Us. 21

6,7

1

5 25,0

100

1

2 10,0

5,6

1

15 12,0 1

0,8

26 61,9

9 21,4

Quercus f.c.
%

2 8,33

nb

Quercus/Castanea
%

2 11,1

nb

%

nb

1

6,7

5,1

%
0,9

%

2 16,7

1

nb
6

%

6 50,0

7

nb

12

117

nb

5,0

1

1

3,4

8,3

1 6,7

5 55,6

1 100

1

1 16,7

50

2 13,3
2

1

6,9

8,3

2 100

50

7,2

9
18

125

3 20,0

1 11,1

9 45,0

2 33,3

2
38

29

3

1

1

7

3

8

2

3

2

6

nb

Indéterminés
585

12

15

9

3

1

20

6

2

1

4

2

9

67

24

42

1

2 11,1

31 24,8 26 20,8

7 16,7

2

3 15,0

2 22,2

12 17,9 11 16,4

5 20,8

2 16,7

5 4,27 6

nb

Prunus sp.

1 100

4 22,2

43 34,4

37 55,2

5,6

2 1,71

%

Sorbus sp.

12

3 25,0

8,3

7 10,4

1

Populus/Salix
nb

Crataegus/Sorbus

56

8,3

6,0

%

Ulmus sp.

1

1

7

nb

Effectifs

7 12,5

2 16,7

%

6 5,13

nb

7 58,3

%

54 46,2

nb

12 50,0

%

Pomoïdeae

4 16,7

% nb

2 33,3

1

% nb

Corylus avellana

7 46,7

3 33,3

Betula sp.
nb

Crataegus sp.

1 16,7

2 11,1

6 33,3

2 1,7

nb

4 44,4

1

%
0,9

Abies/Juniperus
nb

Acer sp.

3 33,3

1 4,17

49 87,5

26 22,2

nb

Fraxinus excelsior

Us.24

D.11 (21) (39)

D.12 (21) 38

D.11 (21) Batt.(39)

D.13 (21) 35

D.12 (21) 38

F.20 Us.32 (80)

D.14 (21) (53)

D.13 (21) (35)

K. 10 Us.81 (70)

TR.2 P.9 TP. 127

TR.2 P.15 Us. 124

TR.2 P.8 Us.119 (114)

TR. 2 P.16 Us. 124

TR. 2 P.14 Us. 124

P.16 Us. 124

P.12 Us.124

P.10 Us.124

Us.122

P.5 Us.116

n° échantillon

localisation des
prélèvements

intérieur habitat

intérieur atelier/forge

Fagus sylvatica

Tabl. 32 : Effectif par échantillon et proportion relative des taxons (V. Mougin).

196
L’établissement de Pratz le Curtillet


Tabl. 33: Assemblages anthracologiques par secteurs fouillés (V. Mougin).

<table>
<thead>
<tr>
<th>Secteur</th>
<th>Effectifs</th>
<th>Prélèvements</th>
<th>Localisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Us 22</td>
<td>12</td>
<td>Us 21 P97</td>
<td>foyer 18</td>
</tr>
<tr>
<td>Us 24</td>
<td>15</td>
<td>Us 24</td>
<td>intérieur atelier</td>
</tr>
<tr>
<td>Us 116</td>
<td>117</td>
<td>Us 116 P5</td>
<td>intérieur habitat</td>
</tr>
<tr>
<td>Us 122</td>
<td>12</td>
<td>Us 122</td>
<td>intérieur habitat</td>
</tr>
<tr>
<td>Us 124</td>
<td>56</td>
<td>Us 124 P10</td>
<td>intérieur habitat</td>
</tr>
<tr>
<td>Us 124</td>
<td>12</td>
<td>Us 124 P12</td>
<td>intérieur habitat</td>
</tr>
<tr>
<td>Us 124</td>
<td>42</td>
<td>Us 124 P16</td>
<td>intérieur habitat</td>
</tr>
</tbody>
</table>
combustible, est aussi une espèce pionnière qui renvoie, avec le Noisetier, à des formations de type haies et lisières.

L'observation à faible grossissement du plan ligneux révèle la présence importante des phénomènes de vitrification et de retrait, des caractères liés aux hautes températures, à l'emploi de bois vert ou encore à la multiplication des combustions (Théry-Parisot 2001). La présence d'écorce et les rayons de courbure de certains éléments, notamment le sapin, renvoient à l'utilisation de branchettes de 3-4 cm de diamètre. Le bois de Sapin, à structure peu dense, convient d'ailleurs très bien pour démarrer un feu. Cependant, dans la plupart des cas, la petite taille des charbons n'a malheureusement pas permis d'évaluer le calibre du combustible. Notons par ailleurs l'aspect très tortueux de certains fragments. Malgré la faible quantité de charbons disponibles dans l'atelier, la richesse taxonomique des structures métallurgiques montre l'absence apparente de sélection du combustible, tant dans le choix des essences que dans leur calibre. On observe en effet que les taxons mis en œuvre dans les opérations de travail du métal proviennent de biotopes très variés. L'aire d'approvisionnement en combustible artisanal concerne aussi bien la hêtraie-sapinière que les lisières ou les haies. De plus, à partir des quelques calibres appréciés et de la présence d'essences plutôt arbustives comme le Sorbier et le Noisetier, on peut supposer que l'usage de branches, brindilles et bois de petite taille était une pratique assez répandue à Pratz.

Alors que des études menées sur les proto-industries du nord-ouest de la France (Marguerie 2002) font apparaître un choix dans les espèces mises au feu (hêtre et chêne privilégiés) et un calibre particulier (troncs et grosses branches), des investigations sur la métallurgie carolingienne dans les Deux-Sèvres font état d'un recours systématique au combustible le plus proche, quelle que soit la qualité du bois (Téreygeol, Dubois 2003). Malgré l'absence de règles, il semble néanmoins que les comportements d'acquisition du combustible métallurgique restent directement inféodés aux ressources ligneuses disponibles. Dans ces conditions, le choix des essences et les dimensions du bois mis au feu semblent être un luxe que l'on s'autorise lorsque la quantité de bois présent dans l'aire de collecte dépasse les besoins.

Approche paléo-environnementale

En contexte domestique, l'absence de sélection du combustible ligneux a largement été démontrée (Chabal 1992, 1997; Chabal et al. 1999). Le bâtiment résidentiel et l'atelier de forge étant distants d'environ 100 m, les charbons prélevés à l'intérieur de l'habitat constituent un corpus à part entière, sans risque de mélange avec le combustible métallurgique. Ainsi, sous certaines conditions de dépôt et d'échantillonnage, la liste des taxons mis en évidence et leurs proportions relatives peuvent être traduites en termes de paléo-écologie. Néanmoins, seuls les charbons dispersés, garants d'une certaine durée d'occupation, permettent de synthétiser la végétation ligneuse exploitée. Dans notre cas, même si l'effectif minimal exigé par la méthode (250-300 charbons) n'a pas été atteint pour chacun des échantillons, le mode de prélèvement approprié (par quart de mètre carré) permet de proposer une restitution du milieu végétal environnant. Par ailleurs, la durée d'occupation du site étant réduite à une ou deux générations, l'analyse anthracologique se limitera à dresser une image des boisements exploités, sans possibilité d'appréhender l'évolution de la végétation ligneuse au cours du temps.
L’étude du bâtiment résidentiel repose sur l’identification de 482 charbons. Le spectre anthracologique de ce secteur compte 14 taxons, soit 4 de plus que dans l’atelier où seulement 62 fragments ont été déterminés. Cette information montre que la richesse taxonomique ne semble pas liée au nombre d’éléments étudiés par secteur échantillonné. Elle vient de plus conforter l’hypothèse d’un approvisionnement non sélectif du combustible métallurgique.

Dans un souci de cohérence et de comparaison entre les zones fouillées, les différents prélèvements, qui comprennent des effectifs très variés, ont été traités ensemble par secteur (tabl. 33). En contexte domestique, le spectre anthracologique est dominé par les Pomoidées, représentées par 113 fragments (27,6 %). La liste floristique révèle ensuite la présence d’Abies alba (17,6 %), de Fagus sylvatica (16,6 %) et de Sorbus (11, 6 %). Les autres taxons présentent un effectif relativement réduit. Comme cela a déjà été présenté lors de l’étude des structures métallurgiques, les Pomoidées (Sorbus et Crataegus) renvoient au prélèvement de bois au sein de formations de types haies, lisières, et plus généralement de peuplements peu denses. Ce type de paysage clairsemé est également suggéré par la présence de Prunus (1 %). Sur la base des résultats de la carpologie, il pourrait s’agir du Prunellier (Prunus spinosa), un arbrisseau épineux qui se développe dans les haies, les lisières forestières et les friches (Rameau et al. 1989). Cette végétation pionnière, qui a tendance à coloniser les espaces ouverts en bénéficiant de la lumière, est également représentée au sein de la forge et du dépotoir métallurgique. Cependant, en ce qui concerne les essences héliophiles, on note l’absence du Noisetier et du Bouleau parmi les charbons prélevés dans l’habitat. Cette différence remarquable avec les assemblages du secteur artisanal pourrait illustrer une certaine forme de sélection du combustible destiné aux activités métallurgiques. Toutefois, les effectifs disponibles ne permettent pas de valider ou réfuter cette hypothèse liée aux pratiques de collecte.

Les taxons montrant l’existence d’espaces ouverts en phase de reconquête forestière soulèvent d’autres interrogations. Les essences caractéristiques de haies, de lisières et de friches désignent-elles un stade avancé de dégradation des forêts plus denses? L’exploitation d’espaces clairsemés en phase de reconquête forestière est-elle la marque d’un défrichement de surfaces agricoles précédemment déboisées? Si tel est le cas, ces informations pourraient renvoyer à une agriculture pratiquant la jachère. Cette possibilité conduirait en effet les communautés agricoles de retour sur les anciennes parcelles cultivées à profiter du bois des espèces recolonisatrices. Un déboisement plus ancien peut aussi être envisagé, comme en témoigne la très faible représentation du Chêne (0,8 %) à une altitude où sa présence est concevable d’un point de vue écologique. Cette pression ancienne indiquerait alors une ouverture précoce du milieu à des fins agricoles.

Le Frêne (Fraxinus) et l’Orme (Ulmus) sont des essences communes, aux affinités à la fois collinéennes et montagnardes. On les rencontre aussi bien dans
les bois frais que dans les haies champêtres. Leurs feuillages constituent par ailleurs un très bon fourrage pour les animaux domestiques tels que le porc et le mouton. Dans ce cas, on peut vraisemblablement envisager un prélèvement de bois en fagots lors du pâturage des troupeaux. Une collecte qui pourrait prendre soit la forme d’un ramassage de bois mort, soit celle d’un émondage. En effet, les deux essences se prêtent particulièrement bien à cette pratique qui permet de disposer de bois et offre la possibilité d’un renouvellement en quelques années. Le Saule (*Salix*) et le Peuplier (*Populus*), représentés par deux charbons sans pour autant atteindre le rang de l’espèce, appartiennent à un autre type de formation, la ripisylve, inféodée aux milieux humides. Le bois de ces deux espèces, qui constitue un combustible de faible qualité, peut toutefois être utilisé en menuiserie. Le Saule est également souvent employé en vannerie et le peuplier mis en œuvre pour le charbonnage. Leur présence sous forme carbonisée peut alors également renvoyer au recyclage des déchets ligneux.

Conclusion

L’étude anthracologique de Pratz souligne l’intérêt de la discipline pour les gisements du haut Moyen Âge. En contexte domestique, dans l’hypothèse où le spectre est représentatif d’un point de vue paléo-écologique, la méthode révèle une aire d’approvisionnement en combustible plutôt large, composée d’une mosaïque de formations végétales. Ainsi, la collecte de bois de feu aurait pu se dérouler à la fois dans des boisements aux affinités montagnardes tels que la hêtraie-sapinière, dans des forêts de plus faible altitude où se mêlent Érables, Chênes, Frênes et Ormes, dans des milieux d’ambiance humide comme la ripisylve composée du Saule et du Peuplier, mais également au sein de peuplements clairsemés comme les haies et les lisières, révélées par la présence de *Sorbus*, *Crataegus* et autres Pomoïdées. L’analyse des charbons nous offre aussi la possibilité d’entrevoir certains modes de collecte, par exemple un approvisionnement en bois pratiqué lors du pâturage des troupeaux sous un couvert forestier riche en bon fourrage, comme le sont les rameaux de Frêne et d’Orme. En accord avec les résultats de la carpologie, le ramassage de bois aurait aussi pu avoir lieu en même temps que la récolte des fruits et des graines comme les Prunelles et les Noisettes. Cette étude nous permet par ailleurs d’émettre certaines hypothèses sur les pratiques agricoles des communautés mérovingiennes : l’exploitation d’un milieu en phase de reconquête forestière composé d’essences pionnières comme le Bouleau et le Noisetier, pourrait indiquer l’usage de la jachère. Bien que le Noisetier n’apparaisse pas en contexte d’habitat sous forme carbonisée, il est fortement représenté dans le cadre artisanal puisqu’il constitue l’essentiel du spectre mis en évidence dans le dépotoir de la forge. Les structures métallurgiques (foyer, atelier et dépotoir) comptent au total une dizaine de taxons révélateurs de milieux différents tels que les bois frais (hêtraie-sapinière) et les haies et lisières, c’est-à-dire des formations clairsemées. Ces informations permettent d’avancer l’idée selon laquelle le combustible métallurgique n’a pas été sélectionné. Il semble plutôt avoir été collecté de manière opportuniste. Dans ces conditions, au-delà des renseignements livrés sur les modalités de collecte du combustible métallurgique, l’analyse anthracologique des structures artisanales peut revêtir une dimension paléo-environnementale. Ainsi, au regard de la diversité des essences utilisées pour ces activités spécialisées, l’approvisionnement très large en combustible métallurgique pourrait être la marque d’un état dégradé des boisements alentour, voire d’un stade de pénurie amorcée révélatrice des pressions exercées par les activités métallurgiques sur les peuplements forestiers.
Chapitre 4
La métallurgie

H. Laurent

Réduction et forge en Franche-Comté à la fin de l’Antiquité et pendant la période mérovingienne

La réduction du minerai

Pendant les trois premiers siècles de notre ère, l’essentiel du tonnage de fer consommé en Gaule semble provenir de quelques très grands centres qui produisent chacun d’énormes quantités de métal brut. Les vestiges laissés par cette activité prennent la forme d’immenses tas de déchets. Cette concentration de la production dans des districts bien précis – entre les mains de l’administration romaine – a pour corollaire l’absence de production constatée dans certaines cités. Dans l’Empire, le fer produit en masse circule donc sur de longues distances malgré son poids significatif. Les études conduites en France et dans l’ouest de la Suisse depuis plusieurs décennies, soit sur des secteurs bien précis déjà connus pour leurs vestiges sur la base des publications du xixe siècle, soit dans des régions dépouvrues de données bibliographiques anciennes, montrent que pendant l’Antiquité tardive un changement radical des modes d’exploitation et de diffusion du métal intervient en Gaule. Dans ce contexte, le ivème siècle de notre ère semble marquer un tournant. Les grands centres ferment ou se mettent à produire des quantités beaucoup plus faibles, sans comparaison possible avec ce qui se passait à la période antérieure. À l’opposé, des régions restées jusque-là sans activité voient la création de districts qui ne prennent pas le relais d’anciens centres productifs du Haut-Empire mais sont véritablement nouveaux.

À l’heure actuelle, 219 sites en rapport avec la réduction directe sont inventoriés dans la région. Parmi eux, 87 sont datés au moins approximativement et avec plus ou moins de certitude : 30 par le radiocarbone, 4 par la fouille, 15 par association avec un site d’habitat et 38 par les archives. Il n’est pas utile d’insister ici sur la documentation archivistique qui ne concerne que les usines du Moyen Âge central et du bas Moyen Âge. Restent les sources archéologiques qui permettent de dresser plusieurs constats assez nets. Pendant le Haut-Empire, la cité des Séquanes1 appartenait aux « régions sans fer » et elle le devait sans doute au fait que cet artisanat n’était pas fortement implanté sur son territoire pendant la période d’indépendance (Mangin et al. 1995). Ce n’est pas avant la création de la Maxima Sequanorum, due à la réforme de Dioclétien, que l’on se met à en produire, et encore, après un cer-

1. Bien qu’il s’agisse d’une facilité, on considérera ici que l’actuelle région de Franche-Comté reprend grosso modo les limites de l’ancienne cité du Haut-Empire.
Fig. 112: Ateliers de traitement du fer en Franche-Comté à la fin de l’Antiquité et à la période mérovingienne, et gisements de fer (carte H. Laurent); minerais d’après Rosenthal 1995.
tain délai. Tout semble débuter dans l’agglomération de Segobodium/Seveux-Savoyeux, en Haute-Saône (fig. 112) dans le courant du IVe siècle. Des sondages exécutés dans les années 1980 ont mis au jour des fosses qui contenaient une petite quantité de scories coulées, typiques de la réduction du minerai, accompagnées de céramiques et de monnaies (Bienfait 2002, p. 71). On peut s’étonner de rencontrer en milieu « urbain » ce type d’artisanat qui relève d’ordinaire du milieu rural. Mais, dans le cas de Seveux, il pourrait s’agir de simples essais, en tout cas d’un travail sur de très petites quantités. Quoi qu’il en soit, le choix de cette agglomération n’est sans doute pas dû au hasard : il semble que, dès le Haut-Empire, elle s’était fait une spécialité du travail du métal. Vers le milieu du XIXe siècle, É. Clerc n’hésitait pas à affirmer : « au centre même de Segobodium s’élevaient des fabriques d’armes et des ateliers où l’on travaillait le fer et le cuivre » (Clerc 1847, p. 120). Les fouilles et sondages pratiqués sur le site depuis les années 1970 ont confirmé à plusieurs reprises la présence d’ateliers de bronzeurs et de forgerons en nombre.

Ensuite, des ateliers de réduction s’implantent sur une grande moitié nord de l’actuelle région, sans que l’on distingue de concentration ni même de groupe bien net, ni encore expliquer pourquoi la majeure partie du département du Jura ne livre pas de ferrier alors que le minerai y est bien présent. Le travail a lieu soit en milieu ouvert, soit au sein d’habitat ruraux. À Pin, en Haute-Saône, une prospection approfondie en forêt, suivie d’un relevé schématique, a mis en évidence une série de maisons implantées sur un replat qui domine un vallon abrupt où sont installés deux ferriers, à quelques mètres des murs (Daval 2003, p. 78-81). La datation radiocarbone d’un charbon prélevé dans l’un des ferriers s’accorde bien avec le mobilier céramique et métallique retrouvé sur les maisons d’époque mérovingienne (tabl. 34). Si l’on ajoute que le forgeage des objets a lieu également sur place, comme en atteste la présence de culots à proximité des bâtiments, on est tenté d’interpréter cet artisanat comme un simple travail annexé qui fournit tout juste de quoi équiper une exploitation agricole ou qui apporte un complément de revenus en participant à la satisfaction des besoins locaux. On est également tenté d’une part de généraliser cette interprétation en arguant de la petite taille des ferriers rencontrés dans la région (entre 5 et 20 m de diamètre pour la plupart), et d’autre part de leur attribuer individuellement une durée de fonctionnement assez courte — de l’ordre de quelques années ou dizaines d’années tout au plus.

C’est peut-être vrai dans certains cas, mais beaucoup d’ateliers semblent poursuivre d’autres ambitions. Les prospections suivies d’analyses radiocarbone ont apporté des renseignements inattendus dans ce domaine. Un district sidérurgique existe à une vingtaine de kilomètres de Besançon. Sur une surface d’environ 140 km² se concentrent 112 sites à scories de réduction directe (la plupart tiennent dans un rectangle d’environ 35 km²). 60 sont des ferriers, alors que les autres montrent des scories dispersées, soit hors de l’habitat, soit à l’emplacement même d’habitats antiques et/ou du haut Moyen Âge. Par habitude, ce district est appelé zone de Berthelange, village situé au centre de la concentration d’ateliers et dans lequel les premiers déchets sidérurgiques ont été découverts dans les années 1980. Comme on l’a constaté, l’utilisation quasi systématique de terres cuites architecturales romaines pour la construction de la partie interne des cuves des bas-fourneaux ne fournit qu’un terminus post quem. La plupart du temps, leur présence ne permet pas à elle seule d’estimer, même vaguement, la période de fonctionnement des ateliers. Vingt analyses radiocarbone ont été effectuées sur des charbons de bois prélevés dans ces ferriers. Sur ce total, 16 dates calibrées se tiennent dans une fourchette théorique dont les dates
extrêmes seraient 342 et 659, soit trois siècles. Un seul ferrier est daté des années 651-869 (tabl. 34). Trois autres sont postérieurs à l’an mille. Les prélèvements ont été effectués sur tous les types de ferriers identifiés sur le terrain en fonction de la topographie, de l’hydrographie et de la typologie des déchets. On doit donc en conclure que les dates obtenues ont une valeur statistique. De nombreux ateliers nous échappent encore. Cependant, la faible taille de chacun est peu à peu compensée par leur nombre et la zone de Berthelange pourrait avoir connu une extension beaucoup plus considérable que les 140 km² actuellement les mieux connus. La présence d’ateliers proches, au nord, au sud et à l’ouest et également datés de la période mérovingienne va dans ce sens.

<table>
<thead>
<tr>
<th>communes (év. zone de Berthelange)</th>
<th>n° sites</th>
<th>lieux-dits</th>
<th>références analyses</th>
<th>âges conv. (BP)</th>
<th>dates cal. 2σ (ap. J.-C.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Le Petit-Mercey</td>
<td>1</td>
<td>Le Puits de Cindre</td>
<td>SacA-16626</td>
<td>1635 ± 30</td>
<td>342-535</td>
</tr>
<tr>
<td>Vandocourt</td>
<td>2</td>
<td>Le Pont Sarrazin</td>
<td>SacA-16629</td>
<td>1630 ± 30</td>
<td>347-535</td>
</tr>
<tr>
<td>Mercey-le-Grand</td>
<td>16</td>
<td>Le Saucy</td>
<td>ETH-31311</td>
<td>1595 ± 45</td>
<td>352-570</td>
</tr>
<tr>
<td>Berthelange</td>
<td>4</td>
<td>À la Vau</td>
<td>ETH-31310</td>
<td>1580 ± 45</td>
<td>391-581</td>
</tr>
<tr>
<td>Dampierre</td>
<td>15</td>
<td>Forêt comm. parc. 12</td>
<td>SacA-22669</td>
<td>1550 ± 30</td>
<td>426-578</td>
</tr>
<tr>
<td>Courtefontaine</td>
<td>1</td>
<td>Forêt de Salans</td>
<td>SacA-22667</td>
<td>1545 ± 30</td>
<td>428-582</td>
</tr>
<tr>
<td>Dampierre</td>
<td>16</td>
<td>Le Chemin des Crasses</td>
<td>SacA-22668</td>
<td>1535 ± 30</td>
<td>432-595</td>
</tr>
<tr>
<td>Ferrières-les-Bois</td>
<td>8</td>
<td>Le Bouvier</td>
<td>SacA-25466</td>
<td>1515 ± 30</td>
<td>433-617</td>
</tr>
<tr>
<td>Melin</td>
<td>1</td>
<td>La Rochotte</td>
<td>SacA-9673</td>
<td>1515 ± 30</td>
<td>433-617</td>
</tr>
<tr>
<td>Évans</td>
<td>26</td>
<td>Bois d’Hyombre</td>
<td>SacA-16627</td>
<td>1505 ± 30</td>
<td>436-637</td>
</tr>
<tr>
<td>Byans-sur-Doubs</td>
<td>11</td>
<td>Levee de Jules César</td>
<td>SacA-13437</td>
<td>1500 ± 30</td>
<td>440-639</td>
</tr>
<tr>
<td>Goux-les-Usiers</td>
<td>1</td>
<td>Montmatigni</td>
<td>SacA-9671</td>
<td>1500 ± 35</td>
<td>436-643</td>
</tr>
<tr>
<td>Ferrières-les-Bois</td>
<td>3</td>
<td>Pré Fergeux</td>
<td>Ly-6431</td>
<td>1490 ± 65</td>
<td>429-654</td>
</tr>
<tr>
<td>Pin</td>
<td>1</td>
<td>Grands Bois de Pin</td>
<td>ETH-31376</td>
<td>1470 ± 45</td>
<td>441-657</td>
</tr>
<tr>
<td>Briaucourt</td>
<td>1</td>
<td>En Favorge</td>
<td>Gif-9761</td>
<td>1460 ± 50</td>
<td>440-662</td>
</tr>
<tr>
<td>Ferrières-les-Bois</td>
<td>7</td>
<td>Le Bouvier</td>
<td>SacA-13439</td>
<td>1490 ± 30</td>
<td>467-645</td>
</tr>
<tr>
<td>Le Petit-Mercey</td>
<td>25</td>
<td>Aux Saucys</td>
<td>SacA-13435</td>
<td>1485 ± 30</td>
<td>536-646</td>
</tr>
<tr>
<td>Évans</td>
<td>18</td>
<td>Bois d’Hyombre</td>
<td>SacA-13436</td>
<td>1480 ± 30</td>
<td>540-644</td>
</tr>
<tr>
<td>Beaujeu</td>
<td>1</td>
<td>Les Pâts</td>
<td>SacA-6568</td>
<td>1475 ± 30</td>
<td>543-644</td>
</tr>
<tr>
<td>Dampierre</td>
<td>8</td>
<td>Le Chemin des Crasses</td>
<td>ETH-32714</td>
<td>1440 ± 45</td>
<td>544-662</td>
</tr>
<tr>
<td>Louvatange</td>
<td>2</td>
<td>Bois de Louvatange</td>
<td>ETH-31312</td>
<td>1440 ± 45</td>
<td>544-662</td>
</tr>
<tr>
<td>Dampierre</td>
<td>9</td>
<td>Bois de La Gr® Combe</td>
<td>ETH-32715</td>
<td>1430 ± 45</td>
<td>548-665</td>
</tr>
<tr>
<td>Mercey-le-Grand</td>
<td>17</td>
<td>Le Saucy</td>
<td>ETH-32716</td>
<td>1425 ± 45</td>
<td>551-668</td>
</tr>
<tr>
<td>Baume-les-Dames</td>
<td>1</td>
<td>Chemin des Combes</td>
<td>ETH-32317</td>
<td>1415 ± 50</td>
<td>544-682</td>
</tr>
<tr>
<td>Louvatange</td>
<td>3</td>
<td>Bois de Louvatange</td>
<td>SacA-22670</td>
<td>1425 ± 30</td>
<td>576-659</td>
</tr>
<tr>
<td>Louvatange</td>
<td>1</td>
<td>Bois de Louvatange</td>
<td>Gif-9315</td>
<td>1290 ± 50</td>
<td>651-869</td>
</tr>
<tr>
<td>Rochefort-sur-Nenon</td>
<td>1</td>
<td>Grange Vannand</td>
<td>ETH-32318</td>
<td>1200 ± 45</td>
<td>688-962</td>
</tr>
<tr>
<td>Antorpe</td>
<td>22</td>
<td>Au Bois Munier Ouest</td>
<td>SacA-13438</td>
<td>890 ± 30</td>
<td>1041-1217</td>
</tr>
<tr>
<td>Antorpe</td>
<td>9</td>
<td>Au Bois Munier Ouest</td>
<td>ETH-30752</td>
<td>800 ± 45</td>
<td>1155-1285</td>
</tr>
<tr>
<td>Le Petit-Mercey</td>
<td>6</td>
<td>Les Foules</td>
<td>SacA-13440</td>
<td>425 ± 30</td>
<td>1425-1616</td>
</tr>
</tbody>
</table>
La forge

La production et la commercialisation d'objets en fer obtenus à partir des masses de fer brut relèvent d'autres circuits. Les traces laissées par cet artisanat sont très différentes de celles qui résultent de la réduction du minerai. Souvent beaucoup moins volumineux que les ferriers, les dépôts de scories de post-réduction sont liés de manière beaucoup plus systématique à l'habitat. Pour l'archéologue, leur mise en évidence suit donc en grande partie le rythme des recherches effectuées sur les habitats, qu'il s'agisse de prospections ou de fouilles.

Les activités de post-réduction ne dépendent plus étroitement des ressources en minerai et en bois mais essentiellement du marché, ce qui induit une géographie des ateliers sans rapport direct avec les ateliers de réduction. Autant la réduction du minerai apparaît concentrée dans l'espace et organisée dans un cadre géographique large, autant la post-réduction semble au contraire éclatée sur le territoire et pratiquée en continu. Sur la carte (fig. 112), la différence de répartition entre les ateliers de réduction et les ateliers de post-réduction saute immédiatement aux yeux. Toute une série de sites s'égare le long de l'axe milléniaire nord-est/sud-ouest formé par les cours parallèles du Doubs et de l'Ognon. Une autre série semble suivre le tracé du cheminement nord-sud, à la jonction de la Bresse et du Revermont jurassien.

Parmi les progrès enregistrés, deux phénomènes doivent être soulignés : désormais, les scories issues de fouilles d'habitats du Haut-Empire sont conservées et les habitats de l'Antiquité tardive et du haut Moyen Âge sont mieux repérés. En milieu rural, le travail à la forge pendant l'Antiquité tardive et le haut Moyen Âge semble poursuivre celui du Haut-Empire. Si les forges antiques donnent encore l'impression d'être beaucoup plus nombreuses que celles des périodes suivantes, c'est uniquement en raison de la différence du nombre de sites connus pour l'instant. Quelle que soit la période, la carte des forges est en grande partie celle de l'habitat.

En 1995, B. Raïssouni (Raïssouni 1995, p. 62-71) a bien montré que la plaine du Finage, très occupée pendant le Haut-Empire, concentre des ateliers par dizaines. Sur certains sites, les quantités de scories en forme de culots repérées au sol sont également inhabituelles par rapport à ce qui est généralement constaté en prospection. Depuis ces travaux, il a été possible de déduire que cette micro-région, associée encore aujourd'hui à une production agricole intense, devait être également « la forge des Séquanes ». Or, de nouvelles prospections montrent que, dans de nombreux cas, les habitats du Haut-Empire sont toujours occupés pendant le haut Moyen Âge, au prix parfois d’un glissement de quelques dizaines de mètres. Pour une partie d’entre elles, les forges ne peuvent plus être datées du Haut-Empire avec certitude qu’auparavant. Bien plus, comme partout, certains établissements sont créés à partir de l’Antiquité tardive ou du haut Moyen Âge... et livrent des scories. Le Finage pourrait donc avoir assuré la fonction de secteur artisanal pendant un millénaire et pas seulement pendant quelques siècles.

Dans ce portrait, les villes sont peu présentes. Le problème ne réside pas dans le manque d'intérêt pour les niveaux postérieurs au Haut-Empire, mais dans le fait qu’ils sont très rarement rencontrés dans les fouilles urbaines de la région. Pendant les trois premiers siècles de notre ère, les villes produisent massivement de tout et des objets en métal en particulier. L'intensité du travail artisanal semble même être fonction de la taille des agglomérations. Il n’est donc pas étonnant que Besançon, Mandeure-Mathay ou Grozon se trouvent aux premiers rangs. À Besançon, on ne connaît pas avec certitude l’endroit où se trou-
L’établissement de Pratz le Curtillet

...vait exactement la ville à partir du IVe siècle ; à Mandeure-Mathay, tout en ayant relevé une présence diffuse, un noyau d’habitation tardif d’une certaine densité est encore recherché. Pour l’heure, il faut se contenter de signaler que, dans ces villes, les secteurs qui ont livré des vestiges de constructions du haut Moyen Âge ont aussi livré des scories de post-réduction. Est-ce un hasard ?

Conclusion

Rupture dans l’exploitation du minerai, continuité dans la production des objets forgés. Après plusieurs décennies de recherches dans les régions de l’est de la France et de l’ouest de la Suisse, il est désormais bien clair que la sidérurgie de l’Antiquité tardive et du haut Moyen Âge possède sa propre dynamique. Elle ne peut plus être perçue comme une simple continuation de la sidérurgie du Haut-Empire. Si les quantités produites sont moindres, l’organisation à grande échelle demeure : au-delà de son village, l’artisan travaille aussi pour un marché aux larges horizons.

Le sujet soulève encore de nombreuses questions. Compte tenu de la difficulté de les repérer en raison de leur faible taille, de très nombreux ferriers et même sans doute certains districts entiers nous échappent encore. Celui de Berthelange, qui apparaît pour l’instant comme l’un des plus importants de l’est de la France pour la période considérée, ne constitue sans doute pas un cas unique. De même, on aimerait en savoir plus sur les exploitations situées en dehors des concentrations d’ateliers. Relèvent-elles de l’initiative personnelle ou non ?

On n’exploite pas automatiquement toute ressource minière existante, même si elle est abondante mais, dans tous les cas, aucun atelier de réduction ne peut se passer de minerai ni de charbon de bois en quantité. À l’inverse, il est possible de forger dans n’importe quel lieu habité. Les déchets sidérurgiques retrouvés à Pratz relèvent presque exclusivement de l’étape de travail qui suit la réduction du minerai. Leur poids cumulé n’a rien d’impressionnant mais, sur ce point, il soutient aisément la comparaison avec la plupart des sites du Haut-Empire sur lesquels, la plupart du temps, seule est prise en compte la présence de scories et non leur quantité. De même, on s’étonne encore régulièrement de retrouver nombre d’objets en fer (surtout des armes) dans les tombes de l’époque mérovingienne alors que les fouilles d’habitats en livrent peu, bien moins en tout cas que les habitats de l’époque romaine. En réalité, il n’existe pratiquement pas de monographies de sites antiques comportant des comptages exhaustifs. Pour que les comparaisons soient valables, il faudrait tenir compte de la nature, de la surface et de la durée de vie des habitats considérés. Si de tels inventaires étaient réalisés, il n’est pas certain qu’ils mettraient en évidence une si grande disparité d’une période à l’autre dans la quantité de fer consommé ou simplement conservé dans les vestiges. Pour mesurer l’importance économique de la forge de Pratz, comme cela a été fait pour les ateliers de réduction, il conviendra, lorsque les découvertes se seront multiplies, de tenter une évaluation cumulée des quantités produites. Cet exercice est encore prématuro.
Les activités métallurgiques de Pratz: étude interdisciplinaire des déchets

C. Dunikowski, M. Berranger, avec la collaboration de P. Fluzin

Deux ferriers ont été fouillés à Berthelange la Vau et à Ferrières-les-Bois Pré Fergeux et ont livré chacun un fourneau constitué d’une cuve formée d’une ceinture de moellons liés à la terre et tapissée d’une couche d’argile rubéfiée. Ce type de fourneau est également connu dans le massif du Jura, par exemple à Boécourt (Eschenlohr, Serneels 1991) dans le Jura suisse et à Frouard en Lorraine (Leroy 2008). Un seul site de réduction directe a récemment été étudié à Villersexel le Bief du Crible, sur le tracé de la ligne à grande vitesse Rhin-Rhône (Dunikowski 2011). Il est daté des xixe-xixe siècles de notre ère. L’établissement de Pratz le Curtillet est le premier atelier de forge de la première moitié du viiᵉ siècle reconnu en Franche-Comté. Les 50 kg de déchets métallurgiques, essentiellement liés à un bâtiment artisanal équipé d’un ensemble de quatre foyers, résultent principalement de la forge au sens large du terme.
La chaîne opératoire de la fabrication du fer : aspects méthodologiques

L’analyse de cette activité repose sur un postulat de départ qui veut que chaque étape de la chaîne opératoire de fabrication du fer soit caractérisée par des déchets plus ou moins typiques. Afin de mieux cerner les étapes successives de la production du fer, nous employons le concept de chaîne opératoire de fabrication, qui illustre la complexité des opérations aboutissant à un objet en métal (fig. 113). Ce schéma ne s’applique, ici, qu’à la fabrication du fer selon le procédé direct.

Pour disposer d’une vision complète des différentes activités présentes dans un atelier sidérurgique, un échantillonnage le plus large possible des diverses catégories de vestiges doit être observé, puis analysé (approche archéométrique). Dans cette approche (fig. 113, colonne de droite), chaque étape de la fabrication

Fig. 113: Schéma de chaîne opératoire de la fabrication du fer (C. Dunkowski).
du fer est matérialisée par des structures spécifiques : fosse d'extraction, four et foyer ainsi que par des déchets obtenus lors des opérations successives. Il s’agit par exemple de la gangue résultant du traitement du minerai, des scories produites lors de la phase de réduction du minerai et des battitures et des scories en culot résultant d’un travail de forgeage. Le décryptage des informations fournies par toutes les catégories de déchets (scories, métal, battitures, parois de foyers) ne peut aboutir qu’à l’issue de l’ensemble des investigations : reconnaissance morphologique, répartition et assemblage des différentes catégories de déchets, données chimiques et métallographiques. L’étude de la répartition spatiale des vestiges apporte de nombreux renseignements ; l’organisation de l’atelier n’est souvent perceptible que par la présence de déchets et par les traces des séquences de la chaîne opératoire (débris de minerai, de charbons de bois, etc.) éparpillés sur le sol ou regroupés dans des structures.

Étude macroscopique des déchets scorifiés

La réduction : du minerai au métal
La réduction du minerai est la phase au cours de laquelle le minerai – matière première ayant pu subir une transformation préliminaire plus ou moins importante – est transformé en métal (Cabboi et al. 2007). Cette opération, qui se déroule dans un espace confiné : le fourneau, permet d’obtenir un produit métallique dont la nature et l’aspect dépendent de la manière dont le travail est accompli. Simultanément, des déchets caractéristiques de la technique employée se forment.

La méthode de réduction selon le procédé direct est la seule technique mise en œuvre en Europe jusqu’au cours du Moyen Âge. Dans ce procédé, le fer métallique est produit directement à l’état solide sans passer par un état liquide : il n’y a pas de coulée de métal. On appelle communément bas fourneau, l’appareil dans lequel s’effectue la réduction directe.

Les opérations de réduction du minerai de fer visent à transformer tout ou partie des oxydes de fer contenus dans le minerai, en fer métal. La production de fer par réduction directe est possible dans des fourneaux ou des foyers de formes très variées et peut être conduite de manières extrêmement diverses, comme le démontrent aisément les exemples fournis par l’ethnographie en Afrique et en Asie.

Dans le bas fourneau, le métal se rassemble à la base de la cuve en un bloc pâteux. Ce produit brut, retiré en fin d’opération, est ensuite transformé (épuré, compacté) et utilisé à la forge. Il ne laisse donc que peu de traces archéologiques et il est difficile d’en donner une description précise. Aux températures atteintes, au-dessus de 1 200 °C, l’autre partie des constituants du minerai (dont une part des oxydes de fer) fond et forme un liquide qui s’accumule au fond de la cuve et/ou s’écoule à l’extérieur : la scorie. Ces déchets, caractéristiques de la réduction, sont rejétés autour des ateliers, souvent en tas (ferriers ou crassiers), parfois en fosse. Ils sont généralement associés à des cendres et des morceaux non consommés de charbons de bois, ainsi qu’à des fragments de parois de terre cuite provenant de la destruction d’une partie des élévations des fourneaux nécessaires à l’extraction du bloc de métal.

Les déchets liés à la réduction se présentent, sur l’établissement de Pratz, sous la forme de minerai et de scories d’aspect coulé. Aucun fourneau de réduction n’a été découvert lors de la fouille des deux bâtiments ni sur le périmètre des 16 ha étudiés alentour.
Minerai
Plusieurs dizaines de fragments de minerai brut ont été observés dans l’échantillonnage récolté. Ils se présentent sous la forme de rognons centimétriques aux surfaces émoussées, de couleur brune (fig. XI, n° 1). Ils sont présents principalement dans les remplissages argileux piégés dans les failles de calcaire en place. Parfois, des rognons de minerai portent des traces d’action du feu, qui se traduisent par un rougissement des surfaces et un test positif à l’aimant. Toutefois, il est délicat d’affirmer qu’il s’agit d’une action volontaire (grillage du minerai) qui aurait pour but d’enrichir la matière première et de la rendre poreuse afin de la concasser plus facilement. Il peut s’agir d’un contact accidentel avec le feu, d’autant qu’aucune trace tangible de structure de chauffe du minerai n’a été découverte sur la zone étudiée.

Scories d’aspect coulé
Il s’agit, d’une part, de masses de scorie de couleur grise, plus rarement gris jaune, présentant une face marquée par des cordons formés d’écoulements de scorie liquide (fig. XI, n° 2 et 3). Ces déchets sont, le plus souvent, constitués d’un amoncellement de petits cordons dont la largeur ne dépasse pas 2 cm. Les surfaces supérieures sont lisses et sans plissements. En revanche, les surfaces inférieures sont marquées par la présence épisodique de charbon de bois ou d’empreintes de celui-ci. Ces scories sont très rarement magnétiques (réactives à l’aimant).
Au total, 2,6 kg de scories écoulées ont été découverts aux alentours du bâtiment artisanal. Ce chiffre constitue 8 % de la masse totale des déchets métallurgiques recueillis (tabl. 35). En revanche, les scories d’aspect coulé dans l’échantillonnage provenant du bâtiment résidentiel ne représentent que 3 % de la masse totale des déchets, soit 22 échantillons.
D’autre part, un faible pourcentage de déchets apparaît sous forme de gouttelettes ou de masses scorifiées effilées, marquées par de nombreuses empreintes de charbon de bois. Elles peuvent résulter du passage des scories à l’état liquide à travers un niveau charbonneux situé à la base de la structure de réduction. Ainsi, en s’éloignant de la source de chaleur (tuyère ou évent), les déchets se refroidissent progressivement et se figent lorsque les températures ne permettent plus de conserver leur état liquide. Au total 0,77 kg de scories en gouttelettes ont été observés dans l’échantillonnage provenant du bâtiment artisanal. Ces déchets, qui sont en faible nombre, résulteraient de la phase de la production de métal dans un bas fourneau à scorie écoulée.

Éléments de parois
Cette catégorie de déchets est étroitement liée à la ou les structure(s) de combustion employée(s) par les métallurgistes. Il s’agit de fragments d’un revêtement argilosableux marqué d’un seul côté (intérieur du foyer) par une forte altération thermique ; celle-ci se traduit par une scorification ou vitrification de la matière d’origine (argile et sable). Cette altération sera plus ou moins marquée selon son degré de chauffe et par conséquent en fonction de son éloignement de la source de chaleur (fig. XI, n° 4 et 5).
Un seul fragment de paroi découvert dans le bâtiment artisanal (carré I16 Us.20) semble appartenir à une structure de réduction. Il s’agit d’un échantillon pourvu d’un orifice, dont le diamètre reconstitué est d’environ 8 cm et qui est caractérisé par la présence, en dessous de cet orifice, d’une importante masse de scorie dense de couleur grise. De par ses caractéristiques, cette paroi appartient à un système de ventilation d’une structure de réduction (Cabboi et al. 2007).
Éléments magnétiques
Cette catégorie de déchets regroupe les éléments extraits de l’ensemble des scories à l’aide d’un aimant. Les échantillons magnétiques constituent 4 % de la masse totale des déchets, c’est-à-dire 1,4 kg dans le bâtiment artisanal, et ils sont quasi inexistants dans la zone résidentielle (tabl. 35 et fig. 114). Dans la majorité des cas, il s’agit d’éléments métalliques associés aux scories et plus rarement aux parois. Plus de la moitié des échantillons se présentent sous la forme de masses plus au moins ramollies et enrobées d’une couche d’oxydation secondaire, résultant d’un séjour des échantillons dans un milieu humide (corrosion par hydroxydation). Ces éléments pourraient avoir été produits lors de la phase d’épuration de la masse de fer brute, peut-être produite in situ. En effet, après la fin de l’opération de réduction, la masse de métal peut-être épurée et compactée sur place. Cette action consiste à débarrasser le métal brut des macro-impuretés, qu’elle contient. Lors de cette opération, des scories assez riches en métal et associées à des éléments sablo-argileux (paroi) ou siliceux (fragments de scorie interne du bas fourneau) sont perdues.
En conclusion, les déchets d’une activité de réduction de très faible ampleur ont été identifiés. Au vu de la très faible quantité de déchets produits, de l’absence de traces d’un bas fourneau, et enfin de la grande quantité d’objets en fer découverts sur le site, ces déchets peuvent avoir un caractère résiduel et se rapporter à une activité ponctuelle développée à proximité du site, mais qui ne pouvait pas couvrir en intégralité les besoins en métal des ateliers de forgeage.

Tabl. 35: Proportion des différents types de déchets selon les bâtiments (C. Dunikowski).

<table>
<thead>
<tr>
<th>catégorie</th>
<th>bâtiment artisanal poids en g.</th>
<th>bâtiment artisanal nombre</th>
<th>catégorie</th>
<th>bâtiment résidentiel poids en g.</th>
<th>bâtiment résidentiel nombre</th>
</tr>
</thead>
<tbody>
<tr>
<td>scorie coulée</td>
<td>2625</td>
<td>128</td>
<td>scorie coulée</td>
<td>275</td>
<td>22</td>
</tr>
<tr>
<td>éléments des parois</td>
<td>1715</td>
<td>97</td>
<td>éléments des parois</td>
<td>1668</td>
<td>72</td>
</tr>
<tr>
<td>scories magnétiques</td>
<td>1373</td>
<td>62</td>
<td>scories magnétiques</td>
<td>30</td>
<td>5</td>
</tr>
<tr>
<td>culot</td>
<td>27452</td>
<td>865</td>
<td>culot</td>
<td>10120</td>
<td>150</td>
</tr>
<tr>
<td>fer</td>
<td>1668</td>
<td></td>
<td>fer</td>
<td>1014</td>
<td>15</td>
</tr>
<tr>
<td>cuivre</td>
<td>68</td>
<td></td>
<td>cuivre</td>
<td>721</td>
<td>9</td>
</tr>
<tr>
<td>plomb</td>
<td>224</td>
<td></td>
<td>plomb</td>
<td>111</td>
<td></td>
</tr>
<tr>
<td>total</td>
<td>35900</td>
<td>1152</td>
<td>total</td>
<td>13939</td>
<td>273</td>
</tr>
</tbody>
</table>

Fig. 114: Proportion des différents types de déchets (C. Dunikowski).
Tabl. 36a: Faciès des culots de forge (C. Dunikowski).

<table>
<thead>
<tr>
<th>n° de culot</th>
<th>poids en grammes</th>
<th>diamètre max. en mm</th>
<th>épaisseur en mm</th>
<th>magnétisme surf. sup.</th>
<th>magnétisme surf. inf.</th>
<th>couleurs surf. sup.</th>
<th>couleurs surf. inf.</th>
<th>faciès</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>50</td>
<td>50</td>
<td>20</td>
<td>4</td>
<td>5</td>
<td>gris/vert</td>
<td>gris/vert</td>
<td>sa</td>
</tr>
<tr>
<td>43</td>
<td>21</td>
<td>54</td>
<td>45</td>
<td>29</td>
<td>5</td>
<td>gris/vert</td>
<td>gris/vert</td>
<td>sa</td>
</tr>
<tr>
<td>12</td>
<td>128</td>
<td>70</td>
<td>25</td>
<td>5</td>
<td>4</td>
<td>gris/vert/bleu</td>
<td>gris/vert/bleu</td>
<td>sa/sdg</td>
</tr>
<tr>
<td>20</td>
<td>24</td>
<td>58</td>
<td>30</td>
<td>4</td>
<td>5</td>
<td>gris</td>
<td>gris</td>
<td>sa/sdg</td>
</tr>
<tr>
<td>42</td>
<td>21</td>
<td>52</td>
<td>60</td>
<td>20</td>
<td>5</td>
<td>gris/vert</td>
<td>gris/vert</td>
<td>sa/sdg</td>
</tr>
<tr>
<td>48</td>
<td>sect 4</td>
<td>82</td>
<td>55</td>
<td>39</td>
<td>5</td>
<td>gris/vert</td>
<td>gris/rouille</td>
<td>sa/sdg</td>
</tr>
<tr>
<td>57</td>
<td>22</td>
<td>84</td>
<td>75</td>
<td>20</td>
<td>3</td>
<td>gris/vert</td>
<td>gris/violet</td>
<td>sa/sdg</td>
</tr>
<tr>
<td>35</td>
<td>22</td>
<td>67</td>
<td>72</td>
<td>27</td>
<td>3</td>
<td>gris/vert</td>
<td>gris/violet</td>
<td>sdg</td>
</tr>
<tr>
<td>6</td>
<td>sect 3</td>
<td>152</td>
<td>90</td>
<td>40</td>
<td>5</td>
<td>gris/vert</td>
<td>gris/vert</td>
<td>sdg</td>
</tr>
<tr>
<td>7</td>
<td>22</td>
<td>153</td>
<td>80</td>
<td>40</td>
<td>5</td>
<td>rouille</td>
<td>gris/rouille</td>
<td>sdg</td>
</tr>
<tr>
<td>8</td>
<td>sect 3</td>
<td>189</td>
<td>80</td>
<td>30</td>
<td>5</td>
<td>gris/rouille</td>
<td>gris/rouille</td>
<td>sdg</td>
</tr>
<tr>
<td>9</td>
<td>22</td>
<td>129</td>
<td>70</td>
<td>25</td>
<td>4</td>
<td>gris</td>
<td>gris</td>
<td>sdg</td>
</tr>
<tr>
<td>10</td>
<td>22</td>
<td>104</td>
<td>55</td>
<td>22</td>
<td>4</td>
<td>rouille</td>
<td>gris</td>
<td>sdg</td>
</tr>
<tr>
<td>11</td>
<td>22</td>
<td>130</td>
<td>75</td>
<td>30</td>
<td>4</td>
<td>gris/vert/rouille</td>
<td>rouille</td>
<td>sdg</td>
</tr>
<tr>
<td>13</td>
<td>22</td>
<td>120</td>
<td>75</td>
<td>20</td>
<td>5</td>
<td>gris/vert/rouille</td>
<td>rouille</td>
<td>sdg</td>
</tr>
<tr>
<td>14</td>
<td>22</td>
<td>125</td>
<td>65</td>
<td>40</td>
<td>5</td>
<td>gris/vert/rouille</td>
<td>rouille</td>
<td>sdg</td>
</tr>
<tr>
<td>16</td>
<td>sect 3</td>
<td>127</td>
<td>70</td>
<td>45</td>
<td>4</td>
<td>gris</td>
<td>gris</td>
<td>sdg</td>
</tr>
<tr>
<td>17</td>
<td>31</td>
<td>87</td>
<td>60</td>
<td>15</td>
<td>2</td>
<td>gris/vert/rouille</td>
<td>gris/vert/rouille</td>
<td>sdg</td>
</tr>
<tr>
<td>18</td>
<td>sect 3</td>
<td>93</td>
<td>53</td>
<td>40</td>
<td>4</td>
<td>gris/vert/rouille</td>
<td>gris/vert/rouille</td>
<td>sdg</td>
</tr>
<tr>
<td>19</td>
<td>22</td>
<td>82</td>
<td>53</td>
<td>40</td>
<td>5</td>
<td>gris/vert</td>
<td>gris/vert</td>
<td>sdg</td>
</tr>
<tr>
<td>21</td>
<td>31</td>
<td>31</td>
<td>45</td>
<td>20</td>
<td>4</td>
<td>gris/vert</td>
<td>vert</td>
<td>sdg</td>
</tr>
<tr>
<td>22</td>
<td>22</td>
<td>35</td>
<td>55</td>
<td>20</td>
<td>3</td>
<td>gris/vert</td>
<td>gris/rouille</td>
<td>sdg</td>
</tr>
<tr>
<td>23</td>
<td>31</td>
<td>19</td>
<td>34</td>
<td>18</td>
<td>5</td>
<td>gris</td>
<td>gris/vert</td>
<td>sdg</td>
</tr>
<tr>
<td>24</td>
<td>22</td>
<td>58</td>
<td>50</td>
<td>20</td>
<td>5</td>
<td>vert</td>
<td>gris/vert</td>
<td>sdg</td>
</tr>
<tr>
<td>25</td>
<td>15</td>
<td>24</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>gris/vert</td>
<td>gris/rouille</td>
<td>sdg</td>
</tr>
<tr>
<td>26</td>
<td>31</td>
<td>74</td>
<td>65</td>
<td>23</td>
<td>4</td>
<td>gris/vert/rouille</td>
<td>gris/vert/rouille</td>
<td>sdg</td>
</tr>
<tr>
<td>28</td>
<td>31</td>
<td>96</td>
<td>65</td>
<td>15</td>
<td>5</td>
<td>gris/vert</td>
<td>gris/vert</td>
<td>sdg</td>
</tr>
<tr>
<td>30</td>
<td>46</td>
<td>82</td>
<td>65</td>
<td>26</td>
<td>4</td>
<td>gris/vert/rouille</td>
<td>gris/vert/rouille</td>
<td>sdg</td>
</tr>
<tr>
<td>32</td>
<td>sect 3</td>
<td>78</td>
<td>65</td>
<td>15</td>
<td>5</td>
<td>gris/vert</td>
<td>gris/vert</td>
<td>sdg</td>
</tr>
<tr>
<td>33</td>
<td>31</td>
<td>96</td>
<td>50</td>
<td>32</td>
<td>3</td>
<td>rouille</td>
<td>rouille</td>
<td>sdg</td>
</tr>
<tr>
<td>34</td>
<td>22</td>
<td>54</td>
<td>54</td>
<td>20</td>
<td>2</td>
<td>gris/vert/rouille</td>
<td>gris/vert/rouille</td>
<td>sdg</td>
</tr>
<tr>
<td>36</td>
<td>31</td>
<td>36</td>
<td>52</td>
<td>15</td>
<td>3</td>
<td>gris/vert</td>
<td>gris/vert</td>
<td>sdg</td>
</tr>
<tr>
<td>38</td>
<td>31</td>
<td>70</td>
<td>70</td>
<td>19</td>
<td>5</td>
<td>rouille</td>
<td>rouille</td>
<td>sdg</td>
</tr>
<tr>
<td>40</td>
<td>22</td>
<td>70</td>
<td>65</td>
<td>20</td>
<td>4</td>
<td>gris</td>
<td>gris</td>
<td>sdg</td>
</tr>
<tr>
<td>44</td>
<td>22</td>
<td>60</td>
<td>60</td>
<td>21</td>
<td>5</td>
<td>gris/vert</td>
<td>gris/vert</td>
<td>sdg</td>
</tr>
<tr>
<td>45</td>
<td>21</td>
<td>32</td>
<td>65</td>
<td>19</td>
<td>5</td>
<td>gris</td>
<td>gris</td>
<td>sdg</td>
</tr>
<tr>
<td>46</td>
<td>24</td>
<td>35</td>
<td>55</td>
<td>11</td>
<td>4</td>
<td>rouille</td>
<td>rouille</td>
<td>sdg</td>
</tr>
<tr>
<td>47</td>
<td>sect 3</td>
<td>65</td>
<td>60</td>
<td>17</td>
<td>4</td>
<td>rouille</td>
<td>rouille</td>
<td>sdg</td>
</tr>
<tr>
<td>51</td>
<td>sect 3</td>
<td>83</td>
<td>70</td>
<td>15</td>
<td>5</td>
<td>gris/rouille</td>
<td>vert</td>
<td>sfr</td>
</tr>
<tr>
<td>55</td>
<td>22</td>
<td>51</td>
<td>60</td>
<td>17</td>
<td>5</td>
<td>gris/vert</td>
<td>gris</td>
<td>sfr</td>
</tr>
<tr>
<td>1</td>
<td>22</td>
<td>249</td>
<td>75</td>
<td>40</td>
<td>5</td>
<td>gris/vert</td>
<td>gris/vert</td>
<td>sfr</td>
</tr>
<tr>
<td>4</td>
<td>sect 4</td>
<td>144</td>
<td>70</td>
<td>30</td>
<td>3</td>
<td>rouille</td>
<td>gris/violet</td>
<td>sfr</td>
</tr>
<tr>
<td>5</td>
<td>sect 3</td>
<td>148</td>
<td>75</td>
<td>32</td>
<td>3</td>
<td>vert</td>
<td>rouille</td>
<td>sfr</td>
</tr>
<tr>
<td>15</td>
<td>22</td>
<td>118</td>
<td>60</td>
<td>25</td>
<td>2</td>
<td>gris/rouille</td>
<td>gris/violet</td>
<td>sfr</td>
</tr>
<tr>
<td>26</td>
<td>22</td>
<td>54</td>
<td>52</td>
<td>15</td>
<td>3</td>
<td>gris/rouille</td>
<td>gris/rouille</td>
<td>sfr</td>
</tr>
<tr>
<td>29</td>
<td>31</td>
<td>108</td>
<td>53</td>
<td>32</td>
<td>2</td>
<td>gris</td>
<td>gris</td>
<td>sfr</td>
</tr>
<tr>
<td>50</td>
<td>31</td>
<td>67</td>
<td>65</td>
<td>15</td>
<td>1</td>
<td>rouille</td>
<td>rouille</td>
<td>sfr</td>
</tr>
<tr>
<td>54</td>
<td>sect 3</td>
<td>86</td>
<td>70</td>
<td>22</td>
<td>4</td>
<td>gris/vert/rouille</td>
<td>gris/vert/rouille</td>
<td>sfr</td>
</tr>
<tr>
<td>56</td>
<td>31</td>
<td>33</td>
<td>45</td>
<td>12</td>
<td>2</td>
<td>gris/vert</td>
<td>gris/vert</td>
<td>sfr</td>
</tr>
<tr>
<td>3</td>
<td>22</td>
<td>266</td>
<td>90</td>
<td>50</td>
<td>2</td>
<td>gris/vert/rouille</td>
<td>gris/vert/rouille</td>
<td>sfr</td>
</tr>
<tr>
<td>27</td>
<td>31</td>
<td>48</td>
<td>50</td>
<td>22</td>
<td>1</td>
<td>gris/vert/rouille</td>
<td>gris/vert</td>
<td>sfr</td>
</tr>
<tr>
<td>37</td>
<td>22</td>
<td>49</td>
<td>43</td>
<td>20</td>
<td>2</td>
<td>gris/rouille</td>
<td>gris/rouille</td>
<td>sfr</td>
</tr>
<tr>
<td>39</td>
<td>93</td>
<td>65</td>
<td>25</td>
<td>2</td>
<td>5</td>
<td>rouille</td>
<td>gris/rouille</td>
<td>sfr</td>
</tr>
<tr>
<td>41</td>
<td>69</td>
<td>70</td>
<td>15</td>
<td>2</td>
<td>3</td>
<td>rouille</td>
<td>rouille</td>
<td>sfr</td>
</tr>
<tr>
<td>49</td>
<td>sect 3</td>
<td>101</td>
<td>75</td>
<td>16</td>
<td>4</td>
<td>rouille</td>
<td>rouille</td>
<td>sfr</td>
</tr>
<tr>
<td>52</td>
<td>22</td>
<td>112</td>
<td>80</td>
<td>13</td>
<td>1</td>
<td>gris/rouille</td>
<td>rouille</td>
<td>sfr</td>
</tr>
</tbody>
</table>
Le travail de post-réduction : du fer à l’objet
Une fois produit dans le bas fourneau, le bloc de fer brut va subir toute une série d’opérations métallurgiques pour aboutir à la réalisation d’objets manufacturés (Cabboi et al. 2007; Fluzin 2002). Ce sont des opérations que l’on qualifie communément d’opérations de post-réduction ou d’activités de forge. Dans un premier temps, un travail visant l’obtention d’un métal apte à être utilisé pour le forgeage des objets est réalisé. Il aboutit à la réalisation d’objets simples ou complexes, petits ou volumineux, au travers d’une série de manipulations au cours desquelles le fer est, à maintes reprises, réchauffé et martelé. Toutes ces opérations peuvent être réalisées en continu dans le même atelier, mais elles peuvent aussi avoir pour cadre des ateliers spécialisés.

Scories en culots
Les scories en culots sont des déchets produits lors d’opérations de forge (Mangin 2004). Ils se forment par accumulation de divers matériaux plus ou moins fondu dans le fond du foyer de forge, sous l’arrivée d’air par l’intermédiaire d’une tuyère. Ces pièces correspondent à une unité de travail comprise entre l’allumage et l’extinction du foyer. La morphologie de ces déchets sera donc le reflet de l’activité de la chaîne opératoire de la forge pratiquée dans l’atelier. L’étude des déchets, entiers ou fragmentés mais interprétables, permet donc de restituer le type d’activité dont elles sont le produit.

Ces déchets, sur l’établissement de Pratz, se présentent généralement comme des masses de scories hémisphériques. La forme en surface est tantôt ovale, tantôt circulaire, parfois dotée d’arêtes anguleuses (fig. XII et XIII). Les bords sont le plus souvent irréguliers; seuls les exemplaires ayant conservé le mur tuyère possèdent un côté rectiligne, parfois très aisément visible grâce à la présence d’un revêtement argileux. De profil, les scories en culot sont globalement demi-sphériques, mais parfois plates. La couleur des faces supérieures et inférieures varie également d’un échantillon à l’autre, dans une gamme de couleurs allant du gris au violet, du vert à la couleur rouille (tabl. 36). Des tests systématiques

<table>
<thead>
<tr>
<th>n° de culot</th>
<th>N° Us</th>
<th>poids en grammes</th>
<th>diamètre max. en mm</th>
<th>épaisseur en mm</th>
<th>magnétisme surf. sup.</th>
<th>magnétisme surf. inf.</th>
<th>couleurs surf. sup.</th>
<th>couleurs surf. inf.</th>
<th>faciès</th>
</tr>
</thead>
<tbody>
<tr>
<td>53</td>
<td>46</td>
<td>190</td>
<td>90</td>
<td>32</td>
<td>1</td>
<td>1</td>
<td>rouille</td>
<td>rouille</td>
<td>sfr</td>
</tr>
<tr>
<td>58</td>
<td>114</td>
<td>72</td>
<td>67</td>
<td>19</td>
<td>5</td>
<td>4</td>
<td>gris/violet</td>
<td>gris/beige</td>
<td>sa/sdg</td>
</tr>
<tr>
<td>62</td>
<td>122</td>
<td>112</td>
<td>64</td>
<td>37</td>
<td>4</td>
<td>5</td>
<td>vert/rouille</td>
<td>rouille</td>
<td>sa/sdg</td>
</tr>
<tr>
<td>67</td>
<td>104</td>
<td>200</td>
<td>66</td>
<td>39</td>
<td>5</td>
<td>5</td>
<td>gris/rouille</td>
<td>gris/vert</td>
<td>sa/sdg</td>
</tr>
<tr>
<td>68</td>
<td>104</td>
<td>156</td>
<td>78</td>
<td>34</td>
<td>5</td>
<td>5</td>
<td>gris/rouille</td>
<td>gris/vert</td>
<td>sa/sdg</td>
</tr>
<tr>
<td>69</td>
<td>104</td>
<td>162</td>
<td>68</td>
<td>36</td>
<td>4</td>
<td>5</td>
<td>gris/vert</td>
<td>gris/vert</td>
<td>sa/sdg</td>
</tr>
<tr>
<td>61</td>
<td>122</td>
<td>154</td>
<td>46</td>
<td>40</td>
<td>5</td>
<td>5</td>
<td>gris/rouille</td>
<td>gris/rouille</td>
<td>sdg</td>
</tr>
<tr>
<td>64</td>
<td>104</td>
<td>106</td>
<td>55</td>
<td>29</td>
<td>5</td>
<td>5</td>
<td>gris/rouille</td>
<td>gris/rouille</td>
<td>sdg</td>
</tr>
<tr>
<td>65</td>
<td>104</td>
<td>32</td>
<td>45</td>
<td>19</td>
<td>5</td>
<td>5</td>
<td>gris/rouille</td>
<td>gris/rouille</td>
<td>sdg</td>
</tr>
<tr>
<td>66</td>
<td>104</td>
<td>58</td>
<td>66</td>
<td>20</td>
<td>5</td>
<td>5</td>
<td>gris/rouille</td>
<td>gris/rouille</td>
<td>sdg</td>
</tr>
<tr>
<td>70</td>
<td>120</td>
<td>124</td>
<td>37</td>
<td>14</td>
<td>5</td>
<td>4</td>
<td>gris/rouille</td>
<td>rouille</td>
<td>sdg</td>
</tr>
<tr>
<td>71</td>
<td>120</td>
<td>26</td>
<td>42</td>
<td>16</td>
<td>5</td>
<td>5</td>
<td>gris/rouille</td>
<td>rouille</td>
<td>sdg</td>
</tr>
<tr>
<td>72</td>
<td>120</td>
<td>60</td>
<td>48</td>
<td>33</td>
<td>5</td>
<td>5</td>
<td>gris/rouille</td>
<td>rouille</td>
<td>sdg</td>
</tr>
<tr>
<td>73</td>
<td>120</td>
<td>140</td>
<td>77</td>
<td>36</td>
<td>5</td>
<td>5</td>
<td>gris/rouille</td>
<td>rouille</td>
<td>sdg</td>
</tr>
<tr>
<td>74</td>
<td>120</td>
<td>98</td>
<td>74</td>
<td>28</td>
<td>5</td>
<td>5</td>
<td>gris/rouille</td>
<td>rouille</td>
<td>sdg</td>
</tr>
<tr>
<td>59</td>
<td>143</td>
<td>26</td>
<td>38</td>
<td>17</td>
<td>5</td>
<td>3</td>
<td>gris/violet</td>
<td>gris/violet</td>
<td>sdg/sfr</td>
</tr>
<tr>
<td>60</td>
<td>122</td>
<td>452</td>
<td>123</td>
<td>45</td>
<td>4</td>
<td>3</td>
<td>gris/rouille</td>
<td>gris/violet</td>
<td>sdg/sfr</td>
</tr>
<tr>
<td>63</td>
<td>128</td>
<td>350</td>
<td>101</td>
<td>40</td>
<td>3</td>
<td>3</td>
<td>rouille</td>
<td>gris/rouille</td>
<td>sdg/sfr</td>
</tr>
<tr>
<td>75</td>
<td>120</td>
<td>96</td>
<td>73</td>
<td>26</td>
<td>2</td>
<td>3</td>
<td>gris</td>
<td>gris</td>
<td>sfr</td>
</tr>
</tbody>
</table>
à l’aide d’un aimant ont été pratiqués sur des individus entiers (valeurs relatives de 1 pour le signal le plus fort, à 5 pour le signal le plus faible). Ils ont permis de relever la présence ou l’absence de plages contenant du métal sur les deux faces des culots. Sur certains culots, des fragments de mica plus au moins fondu et emprisonnés dans la masse de scorie ont été observés.

La masse totale des scories en culot correspond à près de 70 % des déchets et constitue la catégorie de déchets la plus représentative de l’établissement de Pratz (tabl. 37 et fig. 114).

Dans le bâtiment artisanal, la masse des déchets attribués à cette catégorie atteint 27,5 kg. Le poids des culots entiers ne représente que 23 % de ce chiffre. Dans le périmètre du bâtiment résidentiel, les culots entiers représentent 19 % des déchets attribués à la post-réduction. Les exemplaires complets dans les deux secteurs sont au nombre de 75 et proviennent dans la majorité des cas de l’emprise du bâtiment artisanal (57 individus).

Les échantillons de ce type de scorie sont caractérisés par une fragmentation relativement importante. Les masses des échantillons varient de 15 à 452 g. Les épaisseurs relevées oscillent entre 6 et 50 mm, tandis que les diamètres sont compris entre 24 et 123 mm (tabl. 35 et fig. 114). L’analyse macroscopique des scories en culot permet de distinguer trois faciès (Serneels et al. 2003):

– faciès oxydé contenant généralement du métal : SFR ;
– faciès dense gris : SDG ;
– faciès argilosableux : SA.

Faciès oxydé (SFR)

Les scories de ce type montrent une forte porosité et de nombreuses empreintes de charbon de bois. Leur couleur oscille entre le gris et le rouille (fig. XII et XIII). Les exemplaires réagissent à l’aimant, ce qui témoigne de la présence de fer-métal inséré dans la masse de scorie (valeurs moyennes de 2 à 2,4). Leur poids oscille entre 48 g à 190 g, avec une moyenne de 114 g. Les dimensions varient également de 70 mm à 130 mm, avec une moyenne de 71 mm. Ce faciès constitue près de 14 % du nombre des culots découverts sur l’ensemble du site (tabl. 37). Quelques échantillons montrent une face rectiligne marquée par un reliquat de la paroi du foyer (mur tuyère) dans lequel ils ont été produits. Le revêtement du foyer est composé d’une argile sableuse de teinte rouge à grise, de quelques millimètres d’épaisseur. Elle est marquée par une vitrification épaisse de moins de 5 mm.

Faciès dense gris (SDG)

Les culots appartenant à ce type sont caractérisés par des surfaces de coloration grise ou marron, avec des reliefs peu marqués et des contours plutôt réguliers (fig. XII et XIII). La réaction à l’aimant est nulle, parfois très faible (valeurs moyennes de 4,3 à 4,5). Les profils sont généralement plats, parfois concaves. Ces culots montrent de fortes variations, tant pour les masses (de 15 g à 189 g) que pour les dimensions (24 mm à 90 mm). Ce faciès est le plus représentatif pour le site, car il constitue près de 50 % des individus (tabl. 37).

Faciès argilosableux (SA)

Les composants de ce type de scorie ont subi une fusion au moins partielle. Ce faciès d’aspect vitreux, de couleur allant du bleu au vert, montre une forte porosité. Il est formé de matériaux très hétérogènes incluant des cailloutis. Nous n’avons individualisé que 2 culots qui montrent ces caractéristiques.
3. Enrichissement en carbone périphérique par mise en contact prolongé avec un cément – charbon, corne, etc. – en atmosphère réductrice.

Faciès mixtes
Les trois faciès décrits apparaissent en association sur plusieurs culots.

SAS/SDG
Le faciès sablo-argileux (SA) surmonte toujours le faciès dense gris (SDG). Les échantillons montrant cette association constituent plus de 14 % des culots découverts (tabl. 37 et fig. XIII, no 57). Leur masses oscillent entre 52 et 200 g. En revanche, les diamètres relevés sont très proches (50 à 78 mm), avec une moyenne de 65 mm. Le magnétisme relevé est très faible (moyenne 4,5 mm).

SDG/SFR
Les culots additionnant ces deux faciès sont assez nombreux sur le site, soit 24 % de l’échantillonnage. Les écarts de valeurs de masse et de diamètres sont assez importants, de 26 g à 452 g et 38 mm à 123 mm. Le test à l’aimant fait apparaître des valeurs moyennes de 3,3.

Étude macroscopique des déchets métalliques
Les déchets rassemblés dans cette catégorie sont les matériaux sur lesquels se basent les interprétations des techniques de forgeage, de la nature du métal employé et enfin de la production de l’atelier. En effet, il est possible, par l’étude approfondie des restes métalliques selon leur forme et leur nature, de déterminer si la matière première employée sur la forge est arrivée sous forme de demi-produits ou sous forme de masse de fer brut ou encore si des matériaux récupérés ont été employés. Dans le premier cas, on trouve des chutes de demi-produits découpés, dans le second, on a des témoins archéologiques de l’épuration et du compactage des masses impropres à la fabrication voulue, importées dans l’atelier. De même, les chutes et les pièces abandonnées permettent de distinguer les différentes techniques de forge employées telles les soudures (brasages, corroyage), les traitements thermo-chimiques et thermiques (cémentation, recuit, trempe) ou mécaniques. Enfin, dans le cas de la fabrication d’outils ou d’instruments, les ébauches ou les ratés permettent de définir cette production.

Au total, 300 déchets métalliques ont été découverts sur le site, ce qui représente 3,7 kg de fragments de fer. Les masses et le nombre de pièces découvertes dans les deux bâtiments sont assez proches et se répartissent ainsi: 47,7 % dans le bâtiment résidentiel, 52,3 % dans le bâtiment artisanal, 36 % du poids pour le bâtiment résidentiel et 64 % du poids dans le bâtiment artisanal.

Les débris

Ce type de déchets se présente comme un agglomérat d’un ou plusieurs éléments métalliques informes, associés à des scories ou à des fragments de paroi de foyer. Leur forme est très aléatoire et les surfaces sont perturbées et irrégulières. Ces déchets semblent constituer les seuls témoins du sol de l’atelier métallurgique. En effet, au fur et à mesure de l’activité de forge, des fragments métalliques sont tombés sur le sol, puis se sont réoxydés et soudés pour former ces agglomérats. Leur présence a été constatée uniquement dans le bâtiment artisanal. Il s’agit de 15 fragments dont le poids atteint 846 g (tabl. 40). Leur masse moyenne est de 56 g tandis que les dimensions relevées se situent entre 19 et 26 mm pour une épaisseur moyenne de 14 mm.

Les chutes

Les chutes sont des surplus de métal découpé lors de la mise en forme des objets afin d’obtenir le produit fini. Elles sont marquées, dans plupart des cas, par des surfaces planes et plus au moins régulières et leurs extrémités portent parfois des traces de tranche. On peut distinguer plusieurs sous types.

Les tiges

Il s’agit de produits longs et effilés dont l’épaisseur moyenne est de 5 mm. Leur section est carrée, rectangulaire, ronde, ovale ou en demi-cercle. Elles constituent en nombre la catégorie la plus représentative mise en évidence dans les deux bâtiments (tabl. 40). Presque la moitié des individus porte des traces de découpe ou d’aplanissement des extrémités (fig. XIV, n° 1, 6, 9, 11,15 et 20). Les soies de préhension ont également été rassemblées dans la catégorie des tiges. Ces pièces se présentent sous la forme de fragments de tige de section généralement carrée ou rectangulaire, avec une extrémité large (la tête) où l’on distingue la trace de tranche. La pièce va en s’amincissant et se termine généralement en pointe. Ces chutes servent à la préhension du fer en cours de forgeage. Au nombre de six, elles sont présentes uniquement dans le bâtiment artisanal.

Tabl. 40: Inventaire des différents déchets métalliques (C. Dunikowski).

<table>
<thead>
<tr>
<th>catégorie</th>
<th>bâtiment artisanal</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>nombre</td>
<td>% nombre</td>
<td>poids en grammes</td>
<td>% poids</td>
</tr>
<tr>
<td>barre</td>
<td>2</td>
<td>1,3</td>
<td>29</td>
<td>1,2</td>
</tr>
<tr>
<td>masse complexe</td>
<td>57</td>
<td>36,3</td>
<td>852</td>
<td>35,9</td>
</tr>
<tr>
<td>débris</td>
<td>15</td>
<td>9,6</td>
<td>846</td>
<td>35,6</td>
</tr>
<tr>
<td>tige</td>
<td>76</td>
<td>48,4</td>
<td>400</td>
<td>16,8</td>
</tr>
<tr>
<td>tôle</td>
<td>6</td>
<td>3,8</td>
<td>241</td>
<td>10,1</td>
</tr>
<tr>
<td>total</td>
<td>157</td>
<td></td>
<td>2375</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>catégorie</th>
<th>bâtiment résidentiel</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>nombre</td>
<td>% nombre</td>
<td>poids en grammes</td>
<td>% poids</td>
</tr>
<tr>
<td>bande</td>
<td>19</td>
<td>13,3</td>
<td>254</td>
<td>18,5</td>
</tr>
<tr>
<td>tiges</td>
<td>77</td>
<td>53,8</td>
<td>485</td>
<td>35,2</td>
</tr>
<tr>
<td>tôle</td>
<td>16</td>
<td>11,2</td>
<td>109</td>
<td>7,9</td>
</tr>
<tr>
<td>masse complexe</td>
<td>31</td>
<td>21,7</td>
<td>486</td>
<td>35,3</td>
</tr>
<tr>
<td>total</td>
<td>143</td>
<td></td>
<td>1334</td>
<td></td>
</tr>
</tbody>
</table>
Les tôles
Il s’agit de fragments de métal plat et mince, dont l’épaisseur ne dépasse pas 5 mm. Ce type de chute est très peu représenté sur le site. Dans le bâtiment artisanal, il constitue à peine 4 % des individus et dans le bâtiment résidentiel 11 %.

Les bandes
Ce sont aussi des produits plats, relativement minces et étroits. Ils sont beaucoup plus longs que larges, ce qui les distingue des tôles. Les fragments de bandes présentent toujours des bords rectilignes. Les moyennes pour les épaisseurs avoisinent 5 mm, pour les longueurs 48 mm et pour les largeurs 18 mm. Leurs sections sont généralement rectangulaires et plus rarement carrées. Les masses varient selon la taille des éléments (fig. XIV, n° 4, 5, 7, 8, 17 et 21). Ce type de chutes se retrouve uniquement dans le bâtiment résidentiel.

Les barres
Ce groupe rassemble deux éléments métalliques de section carrée et de forme allongée (44 mm et 52 mm). Leur épaisseur est supérieure à 10 mm. Un des éléments est muni d’une soie (fig. XIV, n° 6). Les deux échantillons ont été retrouvés dans le bâtiment artisanal.

Les masses complexes ou informes.
Des masses métalliques de formes complexes ou n’entrant pas dans les catégories citées ci-dessus ont été regroupées dans cette catégorie. Il s’agit de masses aplatie d’un ou de deux côtés, portant le plus souvent des traces de découpe (fig. XV). Ces masses sont présentes dans les deux bâtiments et montrent des morphologies similaires (tabl. 41).

Répartition spatiale des déchets
Les volumes et les masses des résidus découverts ne sont pas égaux dans le secteur résidentiel et dans le bâtiment artisanal. Ce dernier regroupe en effet plus de 70 % du poids et du nombre des déchets métallurgiques retrouvés, ce qui représente près de 36 kg (toutes métallurgies confondues, tabl. 35). Les déchets issus des deux secteurs présentent des caractéristiques similaires. Dans le secteur résidentiel, le taux de fragmentation est en revanche plus élevé. Il est probable que l’intégralité des déchets provenait du seul secteur artisanal, mais qu’ils ont été réutilisés comme éléments de construction dans l’habitat. Dans le bâtiment résidentiel, les déchets métallurgiques sont ainsi concentrés et mêlés à de la blocaille calcaire servant à combler les anfractuosités de la roche près du mur de façade. Quelques rares scories sont également dispersées dans les couches d’occupations.
Une étude de la répartition spatiale des déchets a été tentée dans le secteur artisanal. Du point de vue archéologique, un atelier de forge est caractérisé par la présence d’un nombre d’indices, parmi lesquels les foyers et l’emplacement

<table>
<thead>
<tr>
<th>masse complexe</th>
<th>moyenne poids (en g)</th>
<th>moyenne longueur (en mm)</th>
<th>moyenne largeur (en mm)</th>
<th>moyenne épaisseur (en mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>bâtiment résidentiel</td>
<td>15,7</td>
<td>43,2</td>
<td>20,9</td>
<td>12,3</td>
</tr>
<tr>
<td>bâtiment artisanal</td>
<td>15,2</td>
<td>34,6</td>
<td>17,6</td>
<td>8,9</td>
</tr>
</tbody>
</table>
d’une ou de plusieurs enclume(s) paraissent les plus importants. En effet, à l’exception du travail à froid, le métal subit, en règle générale, une série de réchauffements dans un foyer ; ensuite, il est travaillé immédiatement sur l’enclume. Ce travail de forgeage sur l’enclume consiste avant tout en des opérations de martelage, de torsions, de soudure, etc. On admet, et les observations dans les forges actuelles mais également les données ethnographiques le confirment, que l’enclume est située à proximité du foyer principal.

Le travail sur l’enclume laisse des témoins sous forme de battitures et de billes, c’est-à-dire des éclats d’oxydes produits au moment de la frappe sur le métal. On retrouve également à proximité du lieu de martelage des fragments de métal coupés à chaud (chutes de forge). Le sol de travail dans les alentours de l’enclume est donc caractérisé par une accumulation de ces types de déchets. L’interprétation d’une forge archéologique consiste à repérer l’emplacement du ou des foyers et, à proximité, les accumulations de battitures (oxydes) qui marquent l’emplacement de l’enclume. Il existe, bien entendu, de multiples facteurs qui interviennent au cours de la vie d’un atelier de forge : nettoyage, mise à niveau du sol de travail, réaménagement des foyers, réparations diverses, érosion naturelle des sols, etc., qui contribuent à brouiller l’image idéale qui vient d’être présentée. Compte tenu des postulats évoqués ci-dessus, nous avons tenté de comprendre la nature et le caractère des niveaux et des structures contenant les déchets sidérurgiques à travers une étude spatiale des déchets de production.

L’emprise du bâtiment artisanal et ses alentours ont été subdivisés en carrés de 1 m de côté. La totalité des déchets métallurgiques a été prélevée par mètre carré, selon ce carroyage, à l’intérieur de chaque unité stratigraphique. Les couches successives fouillées dans cette aire ont également été échantillonnées ; à l’intérieur de chaque mètre carré, quatre prélèvements de sédiment d’un volume constant (environ 0,5 l) ont été effectués. Les prélèvements ont été tamisés à l’eau avec trois mailles de tamis : 8 mm, 2 mm et 500 µm. Après le séchage, les éléments répondant à l’aimant ont été isolés. La majorité des microdéchets est constituée de matériaux produits lors de la frappe du métal sur l’enclume. Il s’agit de billes, de battitures plates avec ou sans ajout argilosableux4, de déchets de métal, de fragments de minerai chauffé, de matériaux argilosableux (morceaux de paroi de foyer fondus et accrochés à la pièce métallique) et d’autres matériaux qui se trouvent à proximité de l’enclume ou du foyer.

La masse des éléments magnétiques contenus dans les prélèvements ne montre aucune zone de concentration significative ni à l’intérieur du bâtiment, ni dans le secteur nord-ouest adjacent la bâtisse, à proximité des foyers. Les valeurs sur toute la surface prélevée oscillent entre 0,5 et 2 g, ce qui ne permet pas de déduire l’emplacement d’enclumes.

La répartition spatiale des macrorestes, et en particulier des chutes métalliques, montre en revanche une très forte concentration en contrebas du bâtiment. Il s’agit le plus vraisemblablement d’une zone de rejets de l’atelier.

Résultats des études métallographiques

À l’issue de l’analyse macroscopique, un échantillon représentatif de culots et de déchets métalliques ont subi une analyse de leur structure interne. Cinq culots, les plus représentatifs, et neuf déchets métalliques ont été analysés. Les échantillons ont été coupés à l’aide d’une scie à disque diamanté refroidi à l’eau. Pour les culots, la découpe a été effectuée dans l’axe présumé ou existant du mur tuyère. Après enrobage, les sections ont été polies à l’aide de papiers abrasifs

4. Les ajouts constituent un enrobage destiné à préserver les pièces métalliques d’une surchauffe et d’une forte perte de métal.
au carburé de silicium à grains décroissant de 80 à 1 000 µm. La finition a été réalisée à l’aide d’un disque à polir en tissu avec des suspensions de poudre de diamant à grains décroissant de 6 à 1 µm. Les observations métallographiques ont été précédées par une attaque des surfaces polies au Nital (HNO₃).

Résultat des analyses par objet

Les culots
Une sélection de cinq culots a subi des analyses métallographiques.

- Pratz culot n° 52 (SFR – fig. XVI)
 Masse: 112 g. Dimensions: 80 x 53 mm; épaisseur: 13 mm.
 Description macroscopique
 Culot de forme ovale, aux surfaces irrégulières de couleur rouille. En coupe, on constate la présence de métal qui occupe la quasi-totalité de la section. Ce fragment de métal est très poreux et contient de nombreux produits de corrosion. Le métal est enrobé par une fine couche de scorie de couleur grise avec des plages contenant du charbon de bois.

 Description microscopique
 La matrice base silice de l’échantillon comprend en majorité du fer métal nappé par endroits de zones de scorie comprenant de la fayalite et très peu de wüstite. Quelques battitures bien distinctes sont visibles dans la scorie, mais en faible quantité.
 La masse métallique est relativement corrodiée en périphérie. Elle contient un grand nombre de replis, de porosités et d’inclusions de scorie base silice avec de la fayalite et sans wüstite. Les porosités sont assez nombreuses, en général aux contours déchiquetés, mais parfois de formes globulaires.
 Après attaque au nital, le métal se révèle composé d’acier hypereutectoïde (perlite et aiguilles de cémentite) avec des traces de décarburation périphérique (ferrite à gros grains). Localement, on observe la présence de lédéburite ou fonte blanche (> 2,1 % C). Globalement, il s’agit d’un produit métallique très hétérogène et incomplètement épuré.

 Conclusions partielles
 Les caractéristiques internes de cette pièce de métal : structure de fonte et d’acier hypereutectoïde, forte proportion d’inclusions non métalliques, évoquent celles d’une masse brute de réduction. La forte teneur en carbone a pu entraîner la fragmentation d’un gros élément métallique à un stade primaire d’épuration/compactage d’une masse de métal brute de volume plus important. En effet, la présence de scorie en périphérie du produit métallique indique une poursuite de la chauffe après sa chute dans la scorie du foyer.

- Pratz culot n° 12 (SA-SGD – fig. XVII)
 Masse: 128 g. Dimensions: 70 x 50 mm; épaisseur: 12 mm.
 Description macroscopique
 Culot de forme ovale. Les surfaces sont de couleur grise et vert-bleu. On note de nombreuses cavités dans une masse siliceuse comportant des grains de cailloutis partiellement fondues. La section montre un agglomérat de scorie grise et d’éléments vitrifiés. Les nombreuses vacuoles sont plutôt réparties en périphérie.

 5. Pourcentage de carbone.
Description microscopique
La matrice base silice comprend de la fayalite en lattes et en pavés avec quelques rares globules de wüstite. Par endroits, de plus fortes concentrations d’oxydes de fer (wüstite) matérialisent des battitures plates et globulaires épaisses partiellement dissoutes dans la matrice fayalitique. Parfois, la matrice base silice cristallisée s’intercale avec des plages argilosableuses. La présence de cristaux de hercynite semble indiquer une contamination par de l’aluminium issue d’apports en argile (provenant probablement de l’altération de la paroi du foyer ou d’adjuvants). Les pertes en métal restent rares et prennent la forme de minuscules fragments ou globules.

Conclusions partielles
La faiblesse des pertes en métal et la taille réduite des éclats métalliques indiquent un travail de forgeage d’élaboration à un stade avancé. Les battitures épaisses évoquent un forgeage d’élaboration sur des produits relativement épais ou volumineux.

Pratz culot n° 8 (SGD – fig. XVIII)
Masse : 189 g. Dimensions : 80 x 50 mm ; épaisseur : 30 mm.

Description macroscopique
Culot ovale aux surfaces rouillées. En section, on observe une masse de scorie grise contenant de nombreuses vacuoles réparties sur l’ensemble de la pièce. Au sommet, on distingue une fine couche contenant du métal dispersé dans la masse.

Description microscopique
La matrice base silice est très hétérogène et forme une stratigraphie en deux plages superposées. La partie supérieure est constituée d’une forte accumulation de globules de wüstite qui empêchent la visualisation de la matrice base silice, tandis que la partie inférieure se compose de fayalite en lattes avec quelques très fines dendrites de wüstite. La partie supérieure de la pièce est également marquée par la présence de métal. Ce dernier est globalement dépourvu d’inclusions et de porosités. Après attaque, il se révèle composé de ferrite et d’acier à 0,3-0,4 %C.

Conclusions partielles
Les constatations précédentes tendent à interpréter ce culot comme résultant de deux phases de travail de forgeage à partir d’une pièce assez volumineuse. Si la première étape témoigne d’un travail mené dans le cadre d’une maîtrise des conditions d’oxydation à chaud, la dernière étape aurait entraîné des pertes en oxydes et métal bien plus importantes.

Pratz culot n° 63 (SGD-SFR – fig. XIX)
Masse : 350 g. Dimensions : 101 x 80 mm ; épaisseur : 40 mm.

Description macroscopique
Culot de forme ovale, avec un côté rectiligne composé d’un revêtement argileux qui correspond au point d’appui contre le bloc tuyère. En surface, la masse, de couleur gris rouille, montre de nombreuses empreintes de charbon de bois. La section laisse entrevoir une masse de scorie grise, avec des produits de corrosion et du charbon de bois. Les plages de métal se trouvent au sommet et à la base de la section, plutôt du côté du bloc-tuyère.
Description microscopique
La matrice base silice comprend de la wüstite cristallisée en gros globules et parfois en fines dendrites. La proportion de métal est plus élevée dans la partie inférieure de l’échantillon sous la forme de chapelets de billes parfois entièrement corrodées. Dans la partie supérieure de la section, le métal est présent de manière plus sporadique et possède des formes plus anguleuses. On note la présence de charbon de bois.
De tels chapelets de billes sont caractéristiques du travail d’un métal relativement carburé plus facilement sujet à brûler au feu que la ferrite (point de fusion à 1 536 °C). Cette concentration en partie inférieure peut également suggérer que le travail à plus haute température a eu lieu au début (soudure ou simplement mise en température d’une pièce de métal épaisse).
Après attaque, le métal se révèle hétérogène allant de plages ferritiques à aciéries à 0,4 % de carbone.

Conclusions partielles
Globalement, l’échantillon présente la même stratigraphie que le culot n° 8, mais inversée (pertes au feu importantes en début de cycle, puis processus d’oxydation bien maîtrisé en fin d’élaboration). Il pourrait résulter de phases d’activités comparables.

Pratz culot n° 56 (SGD-SFR – fig. XX)
Masse : 33 g. Dimensions : 45 x 35 mm ; épaisseur : 12 mm.

Description macroscopique
Culot de forme ovale de couleur gris-vert, avec une cavité au centre de l’échantillon. En section, on observe une importante masse de métal située à l’extrémité de l’échantillon autour de deux grandes cavités. Le métal apparaît également dans la masse de scorie grise de manière très sporadique.

Description microscopique
La matrice base silice comprend de la fayalite en pavés et très peu de wüstite. Un gros fragment de métal est emprisonné dans la matrice base silice. Il est traversé par des porosités aux angles vifs, légèrement orientées à la suite du martelage. Autour du fragment de métal, la fayalite est cristallisée en pavés, et elle prend la forme de lattes dans le reste de la section. Au sommet de la pièce, des billes de métal indiqueraient une surchauffe en fin d’opération.
Après attaque, le métal se trouve être composé d’un acier hypereutectoïde (> 0,9 % C) avec quelques plages de lédéburite et des lamelles de graphite (fonte > 2,1 % C). Le métal est localement décarburé en périphérie jusqu’à la ferrite.

Conclusions partielles
Ce culot présente des caractéristiques comparables à celles l’échantillon n° 52. Il comprend un fragment de métal très carburé et poreux. La déformation des inclusions résulte du martelage en cours. Cet élément s’est ainsi vraisemblablement détaché d’une masse de métal brute durant l’opération de compactage. La chute du fragment n’a pas entraîné l’interruption du processus d’épuration.
Les déchets métalliques
Une sélection de neuf déchets métalliques a également subi des analyses métallographiques.

Pratz Oi.9 (fig. XXI)
Masse : 62 g. Dimensions : longueur : 92 mm ; largeur : 20 mm ; épaisseur : 8 mm.

Description macroscopique
Métal plat de section rectangulaire aminci à une extrémité.

Description microscopique
L’échantillon présente des inclusions superposées et majoritairement fortement écrasées par le martelage. De manière générale, la qualité inclusionnaire peut être évaluée comme bonne (10 à 5 % d’inclusions). Les inclusions sont majoritairement siliceuses et présentent des angles vifs, ce qui évoque l’emploi de technique du jet de sable. On note l’absence d’inclusions écrasées du côté rectiligne. Après attaque chimique au nital, la structure se révèle être majoritairement de la ferrite équiaxe non écrouie. Des structures dites fantômes sont révélatrices d’anomalies de teneurs en phosphore dans le métal. Localement, l’objet contient de l’acier à 0,3/0,4 % C. La superposition de multiples traces de soudures indiquerait une mise en forme par replis successifs.

Conclusions partielles
La qualité de l’épuration et l’absence de traces de travail permettent d’envisager qu’il s’agit d’un objet fini ou proche d’un état final d’élaboration.

Pratz Oi.20 (fig. XXII)
Masse : 45 g. Dimensions : longueur : 50 mm ; largeur : 20 mm ; épaisseur : 14 mm.

Description macroscopique
Masse complexe coupée et pliée.

Description microscopique
On constate l’absence d’enrobage de scorie et de battitures en nappage. La qualité inclusionnaire peut être évaluée comme moyenne (15 à 10 % d’inclusions). Les plus fortes concentrations sont localisées le long d’anciennes lignes de soudure. De manière générale, il s’agit d’inclusions fortement déformées par le martelage et de petite taille. Elles se révèlent majoritairement siliceuses. L’attaque au nital révèle une structure majoritaire de ferrite équiaxe non écrouie. La présence de structures dites fantômes témoigne d’anomalies de teneur en phosphore. Cet objet est constitué d’une ou plusieurs feuilles de structures identiques, repliées sur elles-mêmes.

Conclusions partielles
Cette chute d’élaboration a été mise en forme par replis successifs, à partir d’une ou plusieurs feuilles de métal de structure homogène. On note la très bonne qualité de réalisation des soudures.

Pratz Oi.22 (fig. XXIII)
Masse : 66 g. Dimensions : longueur : 42 mm ; largeur : 36 mm ; épaisseur : 11 mm.

Description macroscopique
Masse plate de section rectangulaire.
Description microscopique

On constate l’absence de battitures et de nappage scorie en périphérie de la pièce métallique. La qualité inclusionnaire peut être évaluée comme moyenne (15 à 10 % d’inclusions). On note la présence d’inclusions base silice avec fayalite et dendrites de wüstite aux contours déchiquetés, peu déformées par le martelage. Des porosités vides en cours d’écrasement sont également présentes en nombre. L’attaque révèle une structure de ferrite équiaxe non écrouie avec des structures fantômes révélatrices d’anomalies de teneurs en phosphore. L’absence de traces de soudure visibles indiquerait une mise en forme par simple écrasement d’une unique masse de métal.

Conclusions partielles

La qualité médiocre de l’épuration et le faible taux de déformation des inclusions indique que cette chute a été abandonnée à un stade d’épuration peu avancé. Le procédé de mise en forme, par simple écrasement de la masse de métal, s’avère d’ailleurs peu élaboré par rapport aux procédés de mise en forme par replis observés sur les chutes se rattachant à un stade plus poussé d’élaboration.

Pratz Oi.1 (fig. XXIV)

Masse : 22 g. Dimensions : longueur : 37 mm ; largeur : 13 mm ; épaisseur : 9 mm.

Description macroscopique

Masse plate de section rectangulaire.

Description microscopique

On note l’absence de nappage de scorie et de battitures en périphérie de la pièce. Les inclusions sont majoritairement fortement allongées par le martelage (comme pour Oi.155) ou sont de petites tailles. Le centre de la pièce est propre et dépourvu d’inclusions, alors que l’on observe localement des concentrations de petites inclusions base silice. Elles contiennent des dendrites de wüstite et de la fayalite. La qualité inclusionnaire peut donc être évaluée comme bonne (10 à 5 % d’inclusions).

L’attaque révèle la présence de lignes de soudures superposées indiquant un procédé de mise en forme par assemblage de multiples feuilles de métal ou par replis successifs. La structure s’avère majoritairement composée de ferrite équiaxe non écrouie. Localement, la pièce contient de l’acier jusque 0,5 % C.

Conclusions partielles

Cette chute d’élaboration se rattache à un stade de mise en forme avancé dont témoignent d’une part la bonne qualité d’épuration, et d’autre part la mise en forme par replis successifs. On note la très bonne qualité de réalisation des soudures.

Pratz Oi.216 (fig. XXV)

Masse : 71 g. Dimensions : longueur : 44 mm ; largeur : 41 mm ; épaisseur : 19 mm.

Description macroscopique

Masse irrégulière portant des traces d’écrasement de deux côtés.

Description microscopique

La présence des battitures en périphérie de la pièce est probablement due à son enfouissement dans un sol de l’atelier de forge. On constate l’absence de nappage de scories en surface. Le métal possède principalement des porosités...
aux contours arrondis peu ou pas déformés par le martelage. Le faible taux de déformation des inclusions permet de le rattacher à un stade peu avancé d’élaboration, tandis que la morphologie arrondie des inclusions résulte du processus de réduction, alors que le métal était proche de l’état pâteux. La qualité inclusionnaire est mauvaise (taux d’inclusion supérieur à 15 % de la section). L’attaque révèle un objet majoritairement constitué d’acier à 0,8 % C, décarburé localement en périphérie.

Conclusions partielles
L’abondance des inclusions dans le métal et la forte teneur en carbone de cet élément métallique permettent de l’identifier comme un fragment de masse brute de réduction. La déformation des inclusions et la décarburation périphérique indiquent que le compactage à chaud avait déjà été initié. Ce fragment de métal s’est probablement détaché d’une masse plus volumineuse, en raison de sa forte teneur en carbone, à un stade d’épuration peu avancé. Ses caractéristiques sont comparables à celles des chutes de métal présentes dans les culots n° 52 et 56.

Pratz Oi.241 (fig. XXVI)
Masse : 55 g. Dimensions : longueur : 38 mm, largeur : 22 mm, épaisseur : 19 mm.

Description macroscopique
Fragment d’une barre.

Description microscopique
Sur l’ensemble de la pièce, en périphérie, on note la présence d’un nappage de scorces constitué d’une matrice base silice très riche en wüstite. La section comprend des inclusions, déformées par le martelage, de petite taille majoritairement siliceuses ou avec des dendrites de wüstite. La qualité inclusionnaire peut ainsi être évaluée comme médiocre (taux d’inclusions supérieur à 15 % de la section). On observe, en faible quantité, mais de façon récurrente, la présence de fissures en joints de grains. Il s’agit de fissures intergranulaires formées durant le martelage. L’attaque a révélé que la pièce métallique était intégralement constituée de ferrite équiaxe non écrouie. L’absence de lignes de soudure visibles indiquerait une mise en forme par simple déformation d’une unique masse de métal. La présence de structures fantômes est révélatrice d’anomalies de teneurs en phosphore. Il est possible que ces fissures résultent d’un forgeage à trop haute température pour ce type de matériau (supérieure à 900 °C, voir Vega et al. 2002, p. 205).

Conclusions partielles
Cette chute d’élaboration se rattache à un stade de mise en forme assez peu avancé, par la qualité imparfaite de son épuration et par le procédé de mise en forme simple, par déformation d’une unique masse de métal.

Pratz Oi.13 (fig. XXVII)
Masse : 30 g. Dimensions : longueur : 32 mm ; largeur : 30 mm ; épaisseur : 7 mm.

Description macroscopique
Fragment de bande tranchée.

Description microscopique
On remarque une faible quantité d’inclusions systématiquement fortement écrasées par le martelage. La qualité inclusionnaire peut ainsi être évaluée comme bonne (10 à 5 % d’inclusions dans la matrice). La majorité des inclusions, majoritairement siliceuses ou avec des globules de wüstite, forment un alignement...
situé à la base de l'échantillon. L'attaque révèle qu'il s'agit des vestiges d'une soudure incomplète. L'objet est constitué de ferrite équiaxe non écrouie. La présence de structures fantômes indique des anomalies de teneurs en phosphore.

Conclusions partielles
Cette chute d'élaboration résulte d'un procédé de mise en forme avancé, dont témoigne la bonne qualité de l'épuration. En cours de mise en forme par repli d'une feuille de structure homogène sur elle-même, elle a été abandonnée avant l'achèvement de la soudure.

Pratz Oi.124 (fig. XXVIII)
Masse: 14 g. Dimensions: longueur: 64 mm; largeur: 16 mm; épaisseur: 11 mm.

Description macroscopique
Fragment de tige.

Description microscopique
On note l'absence de nappage de scorie et de battitures en périphérie de la masse de métal. La qualité inclusionnaire peut être évaluée comme bonne (10 à 5 % d'inclusions dans le métal). En effet, la section comprend de faibles quantités d'inclusions de petite taille. Certaines de ces inclusions, d'amorphe, présentent des angles vifs évoquant l'usage du jet de sable.
L'attaque révèle la présence d'une soudure continue sur toute la longueur de la section. L'objet est constitué majoritairement d'acier à 0,8 % C, décarburée en périphérie jusque 0,6 % C.

Conclusions partielles
Cette chute, dont l'épuration était à un stade avancé, a été mise en forme par assemblage de deux feuilles, de structure comparable, repliées sur elles-mêmes. On note la bonne qualité de réalisation de la soudure d'assemblage.

Pratz Oi.155 (fig. XXIX)
Masse: 20 g. Dimensions: longueur: 46 mm; largeur: 11 mm; épaisseur: 9 mm.

Description macroscopique
Fragment de tige écrasée à une extrémité.

Description microscopique
Aucunes battitures ou nappages de scorie n'ont été observés en périphérie de la pièce. L'objet est caractérisé par une qualité inclusionnaire évaluée comme bonne (5 à 10 % d'inclusions dans le métal). Seules deux zones comprenant des concentrations d'inclusions subsistent en périphérie de l'échantillon. Les inclusions base silice avec des dendrites de wüstite sont fortement écrasées par le martelage. L'attaque révèle une structure majoritaire de ferrite équiaxe non écrouie. L'extrémité de l'objet a été cémentée jusqu'à atteindre une teneur de 0,8 % C, ce qui devait lui conférer de très bonnes qualités mécaniques dans cette zone. L'absence de lignes de soudure visibles indiquerait une mise en forme par simple déformation d'une unique masse de métal.

Conclusions partielles
Il s'agit probablement d'un objet fini, constitué d'une unique feuille de métal de structure hétérogène. L'amé de ferrite s'avérait donc ductile, tandis que les qualités mécaniques de la partie travaillante ont été renforcées par l'application
d’un traitement thermochimique (cémentation jusque 0,8 % C). L’association de qualités de ductilité et de dureté devait conférer de très bonnes qualités mécaniques à cet objet.

Synthèse des analyses métallographiques : nature des chaînes opératoires en présence

Les déchets étudiés se rattachent à deux étapes principales de la chaîne opératoire de post-réduction. Les culots n° 52 et n° 56 ont été constitués durant les étapes d’épuration/compactage de produits métalliques proches d’un état brut de réduction. On note que les caractéristiques structurales des fragments de métal perdus dans les culots sont similaires. Il s’agit de pièces très carburées, constituées d’un acier hypereutectoïde (entre 0,9 et 2,1 % C) et localement de fonte (supérieure à 2,1 % C). Cette très forte teneur en carbone en faisait des objets durs et cassants, plus facilement fragmentés durant le compactage. La déformation des inclusions, ainsi que les traces de décarburation observées au sein du fragment de métal du culot n° 56, et la présence de battitures dans la matrice base silice du culot n° 52, indiquent que l’épuration par chauffe dans un foyer oxydant et par martelage avait été initiée. La stratigraphie des culots permet de déterminer que la chute des fragments métalliques dans le foyer n’a pas interrompu le processus d’épuration. Une chute, Oi.216, correspond également à un fragment de métal brut individualisé. La matrice métallique comprend encore une forte proportion d’inclusions, peu déformées par le martelage. Cette pièce est légèrement moins carburée que les produits métalliques perdus dans les culots, mais il s’agit d’un acier à 0,8 % C, ce qui en faisait un produit très dur. Il s’est probablement détaché d’une masse de métal plus volumineuse durant le compactage et serait tombé au sol, non dans la scorie du foyer.

Les autres déchets se rapportent à des étapes plus avancées vers l’aval de la chaîne opératoire, celles de forgeage d’élaboration d’objets. Le volume des battitures et des pertes en métal observées au sein des trois autres culots étudiés témoignent de la transformation de produits pluricentimétriques. Les culots n° 8 et 63 sont stratifiés. L’une de leurs phases de travail est caractérisée par une forte oxydation à chaud reflétée par la densité élevée des pertes en oxydes (globules de wüstite) et par l’abondance de petits fragments métalliques. Les pertes en métal et en oxydes sont au contraire très faibles lors d’autres phases de travail observées au sein des culots n° 8 et 63, ainsi que du culot n° 12, ce qui démontre une plus grande maîtrise des conditions de chauffe.

L’étude des chutes métalliques permet de restituer plus précisément certaines spécificités du travail des artisans forgerons de Pratz. La majorité des objets analysés résulte d’un travail de forge d’élaboration à un stade avancé. Pour cinq d’entre eux, le taux d’inclusion est compris entre 10 et 5 % de la matrice, c’est-à-dire que le processus d’épuration était quasiment achevé. Une très bonne qualité d’épuration n’est pas nécessairement requise pour l’obtention de tous les types d’objets finis. Néanmoins, d’un point de vue technique, cette caractéristique témoigne d’un investissement en temps spécifique dans l’optique d’obtenir un métal contenant le moins de zones de fragilité possible. Cinq des éléments métalliques étudiés ont d’ailleurs été mis en forme par le repli d’une ou de plusieurs feuilles de métal sur elles-mêmes, procédé qui facilite l’épuration des masses métalliques et qui oriente et homogénéise la structure du métal. On note que l’un des objets finis étudiés (Oi.155), dont il n’est cependant pas possible d’affirmer qu’il ait été produit dans les ateliers de Pratz, présente des caractéristiques mécaniques en adéquation avec son usage. Aciéré sur l’extrémité
travaillante, son âme est constituée de ferrite, ce qui en faisait un produit à la fois dur et ductile.

La structure des pièces métalliques étudiées s’avère d’une grande homogénéité. À l’exception du fragment de masse brute Oi.216 et de la chute Oi.24, majoritairement carburés aux environs de 0,8 % C, toutes les pièces métalliques sont principalement composées de ferrite équiaxe non écrouie, éventuellement associée avec un acier à 0,5 % C. Il s’agissait donc d’objets relativement mous, mais ductiles. Cinq des pièces ferritiques comprennent des structures dites fantômes résultant d’anomalies de concentration en phosphore dans le métal. Ce composé rend localement le métal plus dur (Vega et al. 2002), mais seule une analyse chimique permettrait de déterminer précisément sa teneur. À ce stade de l’étude, ces observations indiquent l’obtention de plusieurs chutes métalliques à partir de minerais phosphoreux dont il n’est pas possible, d’après les données collectées, de préciser l’origin.

Conclusion

La majorité des déchets observés sur le site de Pratz peuvent être attribués sans conteste à la dernière phase de la chaîne opératoire du fer, c’est-à-dire la post-réduction. Parmi ces résidus, les scories en culot sont de loin les plus représentées. Lors de l’approche macroscopique du corpus, il a été possible de caractériser trois faciès morphologiques qui reflètent différentes étapes de la chaîne opératoire de post-réduction. Les résultats des observations microscopiques des sections polies des culots corroborent ces premiers constats. En effet, les caractéristiques des culots étudiés confirment la pratique, d’une part, d’activités d’épuration de masses brutes de fer et, d’autre part, du forgeage d’élaboration de produits probablement assez volumineux.

Le traitement des masses brutes de réduction semble avoir occupé une place importante au sein des ateliers. En effet, l’épuration de produits bruts est identifiée à partir de l’analyse interne d’un culot de type SFR, faciès qui constitue près de 14 % des culots individualisés et d’un culot de type SDG/SFR, faciès correspondant à 24 % du nombre de culots. Une des masses métalliques informes analysées, catégorie représentant de 20 à 36 % du corpus des déchets métalliques (tabl. 40), est également identifiée comme un fragment de masse brute en cours de compactage. Il est possible qu’une partie des déchets classés dans les catégories SFR ou masses informes résultent d’autres opérations de forgeage à l’origine d’abondantes pertes en métal, comme le recyclage ou la brûlure de pièces métalliques. Ces pratiques n’ont pas été mises en évidence à partir du corpus analysé et sont donc probablement marginales. Il semble donc que l’on puisse restituer la pratique d’une activité d’épuration régulière au sein des ateliers de Pratz.

Des restes de minerais, un fragment d’évent et des scories coulées se rapporteraient, après examen visuel, à la réduction du minerai de fer dans un bas fourneau à scorie écoulée. Leur présence, probablement résiduelle, pourrait indiquer la pratique d’une activité de réduction dans l’environnement proche du site. Une partie des fragments de scories pourrait également provenir de l’épuration des masses brutes, et plus particulièrement de l’étape d’assèchement de la scorie hors de la matrice métallique durant le compactage. En effet, les scories coulées ne sont pas présentes en plaques, mais constituées de petits agglomérats. La présence de petits cordon de scorie, ne dépassant pas 2 cm de largeur, se comprendrait alors mieux dans le cadre de cette étape de travail qui n’engendre pas une forte fluidification de la scorie, comme c’est le cas en réduction.
L'identification de déchets liés à la réduction du métal, bien qu'en faibles quantités, et la pratique régulière de l'épuration du métal brut permettent d'envisager l'existence de liens réguliers entre les ateliers de forgeage de Pratz et un ou des ateliers de réduction proches. Si le site est localisé à plus d'une cinquantaine de kilomètres des sites de réduction connus les plus proches (fig. 112), il n'est pas possible d'exclure l'existence de petits ateliers de réduction, encore non identifiés, situés à faible distance. L'acquisition d'un métal au moins encore partiellement brut, offre l'avantage d'obtenir une matière première de faible valeur ajoutée, car pas ou peu transformée. Elle permet également aux artisans forgerons de transformer leur matière première en fonction de leurs besoins aux différents stades de la fabrication d'objets.

Le reste du corpus des déchets se rapporte d'ailleurs aux dernières étapes de la chaîne opératoire de post-réduction, à savoir le forgeage d'élabore d'objets. Ces étapes sont représentées par les culots de forge. Ils sont répartis principalement dans le secteur artisanal, mais aussi dans la partie résidentielle. Dans ce dernier secteur, leur forte fragmentation et leurs caractéristiques identiques aux culots de l'atelier permettent de leur reconnaître un caractère intrusif : ils proviennent très certainement du secteur artisanal. Ces déchets sont globalement de faibles dimensions (en moyenne 65 mm de diamètre pour 30 mm d'épaisseur) et légers : leur masse ne dépasse pas 100 g dans le secteur artisanal et 150 g dans la partie résidentielle. Ces chiffres traduisent la masse relativement faible de déchets produite lors de chaque opération de forge, ce qui pourrait indiquer le travail de faibles volumes de métal. Toutefois, la faible masse des résidus peut être aussi la conséquence de la nature des gestes à la forge, ce qui, dans ce cas, témoignerait d'une réelle maîtrise des conditions d'oxydation à chaud, comme cela a été observé lors de l'étude du culot no 12.

À l'échelle macroscopique, les culots présentent une faible variabilité typologique, ce qui pourrait indiquer une assez grande homogénéité des activités pratiquées : environ 50 % des culots sont de type SGD et 15 % présentent ce même faciès associé à des inclusions argilo-sableuses. L'analyse métallographique de trois exemplaires confirme leur formation durant les étapes de forgeage d'élabore d'objets. Dans les trois cas, la taille importante des battitures et des éclats métalliques permet de restituer la transformation de pièces métalliques suffisamment volumineuses pour supporter de telles pertes en matière. Les chutes métalliques permettent de caractériser plus précisément la nature des pièces métalliques travaillées. Néanmoins, l'absence d'ébauches ou de chutes à un stade quasi final de mise en forme ne permet pas de déterminer avec précision le type de production. On note cependant que les produits plats (tôles, bandes, barres) sont majoritaires au sein du corpus.

L'approche métallographique d'un échantillon représentatif permet de visualiser les techniques de forgeage. Deux techniques de mise en forme sont ainsi identifiées : par simple déformation sur elle-même de la masse métallique (pour quatre chutes) et, pour les chutes les plus avancées dans la chaîne opératoire, par mise en forme par repli ou par assemblage de feuilles de métal (pour cinq exemplaires). Les chutes s'avèrent majoritairement ferritiques ou constituées d'acier à faible taux de carbone, caractéristiques qui en faisaient des objets assez peu durs et donc ductiles. Un objet fini témoigne de la réalisation d'un processus de cémentation, destiné à renforcer sa dureté, au niveau de la partie travaillante. Ce procédé thermochimique, sans être véritablement complexe, démontre un investissement en temps particulièrement long lors de l'étape finale d'élabore d'objets. Cependant, s'agissant d'un objet fini, il n'est pas assuré qu'il ait été produit au sein des ateliers de Pratz.
On observe également de façon récurrente (au sein de cinq chutes sur les neuf étudiées), la présence de structures dites fantômes qui témoignent d’anomalies de teneurs en phosphore. Cette caractéristique pouvait conférer une dureté particulière au métal en fonction de la proportion de phosphore (Vega et al. 2002 – teneur non dosée ici). Elle indiquerait surtout l’emploi récurrent d’un minerai phosphoreux durant les phases de réduction du métal, hypothèse qui reste à confirmer par une analyse chimique non réalisée dans le cadre de la présente étude.

L’étude de la répartition spatiale des déchets n’apporte finalement que peu d’informations sur l’organisation des activités au sein de l’atelier. Le calcul de densité des battitures à l’intérieur du carroyage implanté lors de la fouille ne fournit pas d’indication sur l’emplacement de l’enclume dans l’atelier. Il en est de même lorsqu’on prend en compte la répartition des éléments métalliques produits lors de l’opération de forgeage. La majorité des chutes et des objets fragmentés est en position de rejet, sous forme d’une accumulation en contrebas du bâtiment artisanal. C’est finalement l’étude de l’organisation des structures de chauffe au sein de l’atelier qui fournit le plus d’information dans ce domaine. En effet, une partition de l’atelier en fonction de deux zones comprenant des types de foyers de forge distincts est très nette (fig. 26). Un premier espace de travail, correspondant à la partie nord de l’appentis, comprend deux grands foyers quadrangulaires (n° 18 et 34), mesurant de 1,5 à 2,4 m de côté. La taille des foyers est généralement adaptée à celle des objets à forger, de façon à ne pas brûler trop de matière première, notamment le charbon. La taille de ces foyers permettait donc le forgeage de pièces volumineuses. On peut également envisager une fonction polyvalente, car il est toujours possible de réduire la zone de chauffe au sein d’un grand foyer. La partie sud de l’appentis comprend deux foyers circulaires (n° 35 et 38), bien plus petits, d’un diamètre de 0,30 et 0,50 m. La taille plus réduite de ces foyers permet d’envisager un usage restreint, portant sur des objets de plus petite taille.

Il est possible de supposer que les masses brutes de réduction, qui peuvent se présenter sous la forme de produits volumineux pesant plusieurs kilogrammes (aucun exemple archéologique contemporain et local n’est cependant connu), auraient été plutôt transformées dans les foyers les plus grands, au nord. Néanmoins, le caractère polyvalent de ces derniers semble très probable. Ainsi, la présence de déchets en alliage base cuivre dans le foyer 18 indiquerait une utilisation dans un cadre de polymétallurgie. La rareté des déchets liés à cet artisanat sur le site, ainsi que l’absence de creuset, pourrait laisser envisager une métallurgie des alliages fusibles « annexe » à celle du fer, pour la réalisation de brasures ou d’éléments de décors, par exemple. Les différences de formes et de tailles des foyers traduisent très probablement une réelle organisation des activités métallurgiques.

L’étude interdisciplinaire entreprise sur l’assemblage des déchets scorifiés et métalliques permet de restituer l’activité d’un atelier aux activités de post-réduction diversifiées (épuration/compactage et forgeage d’élaboration). La production semble avoir été orientée vers la fabrication de produits plats aux volumes assez divers. Ainsi, l’étude interne des culots indique le forgeage d’éléments volumineux (multicentimétriques), tandis que certaines chutes ne dépassant pas 10 mm d’épaisseur (cf. supra), se rapportent au travail de produits de faible épaisseur.

La maîtrise de savoir-faire spécialisés est également documentée par plusieurs indices. Tout d’abord, par la pratique de l’épuration de masse brute de réduction, qui doit être bien maîtrisée si l’on veut éviter des pertes métalliques importantes.
Au stade d’élaboration d’objets, la mise en forme par assemblage de feuilles, éventuellement repliées, traduit également un haut degré de réalisation technique étant donnée la qualité des assemblages. Enfin, la dichotomie observée entre la faible masse des culots et les indices métallographiques témoignant du forgeage d’élaboration de produits volumineux, est la trace d’un travail générant très peu de pertes en oxydes et métal durant les phases de forgeage à chaud. L’étude entreprise sur l’atelier de Pratz fournit ainsi de premiers jalons, encore isolés à l’échelle régionale, dans la perspective de mieux déterminer la nature et l’organisation des activités de forge pour cette période du haut Moyen Âge.

Le travail des autres métaux

D. Billoin

D’autres types de déchets posent la question d’un travail d’autres métaux dans l’atelier métallurgique.

Il s’agit d’alliages cuivreux sous forme d’écailles et de fragments de tôles minces (épaisseur inférieure à 1 mm), dont la masse des échantillons varie entre 1 et 2 g. La majorité de ces éléments provient de l’extérieur du bâtiment artisanal, dans le secteur d’épandage sud-ouest. Plusieurs fragments étaient localisés à proximité immédiate du foyer F8, ainsi que dans le remplissage de cette structure, parmi des fragments de récipients en pierre ollaire ayant subi de très forts impacts thermiques. Deux masses informes en alliage base cuivre ont également été recueillies (fig. XXX, n° 2 et 3), ainsi que deux gouttelettes sur la couche d’occupation sous l’appentis de cet atelier (fig. XXX, n° 5 et 6).

Le plomb est également rencontré sous la forme de fragments de tôles et de plaques. Le poids des échantillons (9 au total) oscille entre 1 et 65 g. Ils sont totalement absents du secteur résidentiel.

L’ensemble de ces masses représente à peine 1 % des déchets recueillis à la fouille par rapport aux déchets liés au travail du fer. L’extrême modestie de cet effectif ne doit pas pour autant conduire à rejeter d’emblée l’hypothèse d’un travail de ces métaux au sein de cet atelier de forgerons. Ils constituent donc des indices, complètement absents d’ailleurs des habitats du haut Moyen Âge fouillés jusqu’à présent en Franche-Comté.

En l’absence d’autres déchets caractéristiques comme des creusets, les fragments de récipients en pierre ollaire associés à ces écailles de bronze au sein du foyer 18 ont été analysés sous deux approches privilégiées à la fois le contenu et le contenant. L’analyse pétrographique a révélé une transformation minéralogique de la roche sous l’effet de températures dépassant les 1 000 °C ou plus, correspondant à la gamme des pyrotechnologies de la métallurgie des alliages de cuivre. La présence de petits grains d’un minéral légèrement coloré en bleu dans des fissures de ce récipient évoque, sans que l’on puisse être formel, de l’azurite (carbonate de cuivre). Cette substance inhabituelle pourrait venir confirmer l’hypothèse de l’utilisation de certains récipients de cette vaisselle particulière comme creuset, déjà constaté sur quelques sites du haut Moyen Âge (Mustair GR, San Vincenzo al Volturno, Italie). Les résidus carbonisés conservés sur les parois et le fond de ces récipients ont également été analysés pour tenter, en partant du contenu, d’y déceler notamment des composants chimiques résultant d’une activité artisanale. L’étude n’a, comme on l’a vu, révélé que des matières grasses animales liées à une activité domestique de cuisine.
En conclusion, une métallurgie ponctuelle des alliages à base de cuivre et de plomb ne peut être exclue au sein de cet atelier de forgerons. La présence d’un flanc monétaire non frappé étonne par ailleurs dans ce contexte. Cette activité de fondeur est rarissime à l’époque mérovingienne, ne laissant bien souvent que des traces ténues. Pour exemple, l’habitat rural mérovingien de Develier-Courtételle, avec ses quatre tonnes de déchets sidérurgiques, n’a livré que 16 résidus métaux liqueux liés au travail du cuivre, associés à des creusets (Friedli, 2007).
Chapitre 5
Synthèse générale

D. Billoin

Organisation et implantation de l’établissement

L’établissement de Pratz fait encore figure d’exception par l’étendue de la surface explorée (16 ha) par rapport à la majorité des habitats du haut Moyen Âge de Franche-Comté et des régions voisines, ou encore de Suisse occidentale. Dans la plupart des cas, ces habitats ne sont perçus que par des fouilles partielles, réduites aux projets de l’archéologie préventive, n’apportant que des données spatiales très ponctuelles. L’échantillon est encore restreint par la faiblesse du nombre de fouilles conduites sur ce secteur géographique (tabl. 42), pour la période considérée (viè-viè siècles) et plus largement sur la durée de ce premier Moyen Âge, ce qui limite les approches comparatives sur l’organisation de ces habitats, et rend difficile tout essai de synthèse.

L’érosion importante qui marque la légère pente est en partie responsable de l’aspect particulier de cette occupation limitée à deux édifices distincts, distants d’une soixantaine de mètres, au centre de 16 ha ouverts. La présence du banc calcaire en situation parfois affleurante a constitué une contrainte évidente dans l’aménagement de structures en creux. Ainsi, cet habitat du haut Moyen Âge se distingue d’emblée par deux bâtiments essentiellement construits en pierre, associés à de rares aménagements périphériques. Les habituels creusements variés, considérés jusqu’alors comme caractéristiques de cet « âge du Bois » des historiens, et destinés à la construction, au stockage, à la gestion d’activités diverses ou de déchets, sont absents. L’analyse des structures révèle cependant une parfaite adaptation à la contrainte du banc rocheux ainsi qu’une bonne connaissance préalable du sous-sol, peut-être acquise lors de défrichements et de mises en culture de ces terrains. L’absence, ou presque, de tout vestige structurant et de délimitation rend les espaces entourant ces bâtiments bien vides et dénudés. Point de réseau parcellaire fossoyé ou de palissade, si fréquent sur bon nombre d’habitats du haut Moyen Âge. Au Curtillet, ce sont notamment des murgers qui font office de limites de parcelle et structurent les terrains, à l’exemple du mur de délimitation partiellement conservé en contrebas du bâtiment artisanal, sur une longueur de 38 m, selon une pratique séculaire propre au massif du Jura et aux régions voisines. Cette limite physique de l’occupation s’inscrit le long d’un cheminement où plusieurs objets en fer ont été retrouvés, dont un fer à cheval, alors que le cadastre napoléonien (1834) figure un chemin très proche de cet itinéraire, dont le tracé a été repris en partie par l’élargissement de la route départementale à la fin du xixe siècle. Une permanence de cet axe de circulation...

<table>
<thead>
<tr>
<th>sites</th>
<th>type d'occupation</th>
<th>datation</th>
<th>superficie de fouille</th>
<th>artisanats</th>
<th>études complémentaires</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chavérià (39) En Thoreigne</td>
<td>indéterminé fosse</td>
<td>VII/VIII s.</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>Choisy (39) Parthey</td>
<td>habitat rural sur poteaux / nécropole</td>
<td>VII/VIII s.</td>
<td>7 ha</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>Écrite (39) La Motte phase I</td>
<td>site de hauteur</td>
<td>VII/VIII s.</td>
<td>métallurgie</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>Écrite (39) La Motte phase II</td>
<td>site de hauteur</td>
<td>VII/VIII s.</td>
<td>?</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>L'Étoile (39) En Toupe</td>
<td>habitat rural</td>
<td>VII s.</td>
<td>0,88 ha</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>Ménétretu* (39) En Gailarden</td>
<td>site de hauteur</td>
<td>VII/VIII s.</td>
<td>forge, verrer, tabletterie</td>
<td>faune, pétrographie, verre</td>
<td>/</td>
</tr>
<tr>
<td>Pratz (39) Le Curtillet</td>
<td>habitat isolé architecture en pierre</td>
<td>milieu VII s.</td>
<td>16 ha fouille de 0,49 ha</td>
<td>forge cuir/peau</td>
<td>faune, anthracologie, carpologie, pétrographie, verre</td>
</tr>
</tbody>
</table>

L’érosion et la mise en culture de ces terrains au XIXe siècle sont à l’origine de la disparition de ce type de vestiges – murs de délimitation et haies – qui compartimentaient vraisemblablement l’environnement proche de ces deux bâtiments. L’absence de tout mobilier, y compris dans les diaclasses de la roche de ces vastes espaces vides, évoque des secteurs réservés aux pâturages, aux cultures et aux jardins. D’autres activités agricoles de traitement des céréales ne nécessitent pas d’aménagement particulier susceptible de laisser des traces, comme le séchage, le battage ou le vannage. Aucune structure de stockage – tels que les greniers sur poteaux et les silos, habituels sur bon nombre d’habitats de cette période – n’est attestée en raison de la nature du sous-sol. Pour autant, il ne faut pas verser dans une forme de déterminisme lié à ce socle rocheux, qui a constitué aussi bien un atout qu’une contrainte dans l’implantation et la construction de ces édifices. À l’évidence, l’absence de structures de stockage enterrées renvoie à une autre forme de gestion des récoltes et du fourrage, regroupés au sein du vaste bâtiment d’habitation.
En effet, la taille de cet édifice, 240 m² au sol auxquels il faut ajouter un étage sous comble, ne laisse guère de doute sur le fait qu’il a abrité des espaces à vocation diverse, habitations et locaux agricoles (grange et étable), préfigurant l’habitat traditionnel de montagne caractéristique du massif du Jura. Ce regroupement des activités à l’intérieur des édifices se constate aussi dans les annexes accolées, abritant des activités artisanales, à l’origine de l’aspect assez lâche de l’utilisation de l’espace. D’une certaine façon, ces annexes se substituent aux habituels fonds de cabane, si fréquents sur les autres sites d’habitat de cette période. On est loin de l’éparpillement des vestiges et des multiples constructions de tailles et d’usages divers constituant des unités agricoles juxtaposées qui caractérisent les occupations de plaine de cette période, à l’exemple de l’habitat groupé de Genlis, en Côte-d’Or (Catteddu 1992) ou de Develier-Courtételle, dans le Jura suisse (Federici-Shenardi, Fellner 2004).

L’état de conservation des vestiges construits est globalement satisfaisant, favorisé, il est vrai, par les maçonnements qui offrent de multiples aménagements intérieurs et des couches d’occupation ponctuellement conservées. Associés à une lecture spatiale des déchets matériels, ces vestiges bâtis spécifiques offrent une occasion rare d’étudier la fonction de différentes pièces et d’aborder la restitution des édifices. Le bâtiment résidentiel réunit différentes fonctions sous le même toit. Parmi les quatre pièces, le foyer constitue la marque essentielle qui distingue le lieu de vie, la pièce principale des autres espaces du bâtiment. La présence d’un potager complète ce dispositif et évoque un certain niveau de confort. L’autre pièce, plus petite, suggère une sorte de local utilitaire avec un puits naturel localisé pratiquement au centre de la pièce et utilisé comme un lieu de stockage favorisant la conservation de denrées périssables. D’après leur taille et leur disposition, les deux autres espaces correspondent à la partie exploitation agricole, destinée à abriter bétail, fourrage et récoltes. La répartition fonctionnelle des espaces en travées sous un même toit, au moins de façon schématique, entre habitat et exploitation, constitue l’un des caractères constants des maisons comtoises. Ces maisons-blocs à grand volume sont conçues pour permettre l’hivernage des bêtes, et la grange ou fenil domine à la fois l’étable et le logement. Le fourrage, mis ainsi en réserve sous ces belles surfaces en soupentes, permet de nourrir les animaux pendant les longs mois d’hiver et constitue un bon isolant. Dans cet espace bâti, les hommes profitent également de la chaleur des animaux. Cet habitat est soumis en effet à des contraintes rigoureuses, les maisons étant exposées à des températures très basses, fréquemment −20 °C, et à des cycles de gel-dégel très nombreux, ainsi qu’à des surcharges de neige sur les toitures (Blanchard et al. 2004). La maison, qui constitue le lieu de travail et d’habitation, doit donc s’adapter à une nature qui impose ses exigences.

À cette lecture archéologique s’ajoutent des mentions issues de la Vie des Pères du Jura (cf. chapitre 6) dans un regard croisé entre données archéologiques et textuelles. L’auteur anonyme de ce récit hagiographique mentionne un grenier, représentant un lieu de stockage à l’étage du monastère, et une « dépense » pour entreposer les provisions de table, indiquant une gestion du produit des récoltes et de la nourriture effectuée directement à l’intérieur des constructions. Cette gestion en hauteur des denrées alimentaires est un mode de stockage qui s’accorde à la configuration des structures mises au jour à Pratz, car la nature du sol rend difficile le creusement de silos pour la conservation. La mention de foinment dans ce texte, entreposé en gerbes et battu au moment de son utilisation, renvoie encore à une mise en réserve particulière, en milieu aéré pour le séchage. Les vastes soupentes des toitures du bâtiment résidentiel ont pu servir ainsi de fenil, où étaient entreposés le fourrage ainsi que les récoltes. Les nombreux
fragments de meules retrouvés à la fouille étaient d’ailleurs presque exclusivement situés dans l’édifice résidentiel, indiquant que la production de farine s’effectuait avec des meules à bras à proximité de ces réserves. Aucun de ces fragments n’a été retrouvé en position fonctionnelle, mais l’on notera la présence d’une meule rotative complète, devant l’entrée large de l’annexe artisanale flanquant cet édifice. À la question de l’alimentation en eau de l’établissement de Pratz, peu éloigné de sources, ce texte hagiographique peut apporter un élément de réponse en évoquant le captage : « ses eaux vives, aujourd’hui encore [sont] conduites jusqu’au monastère par des tuyaux de bois » (Martine 1968, p. 247), un dispositif de surface qui a peu de chance de laisser des traces dans le sous-sol de ce plateau calcaire à faible recouvrement sédimentaire.

La chronologie de l’occupation et le mobilier

Une datation radiocarbone dans un niveau de sol de l’atelier situe l’occupation entre les années 561 à 687 de notre ère, avec des pics de probabilité, par ordre décroissant de possibilité, en 648, 625, 605 (Ly-10274). Une seconde, réalisée dans la couche d’occupation du bâtiment résidentiel, offre une datation très proche, de 661 à 768 (Ly-11917), avec trois pics probables en 685, 705 et 755. L’étude du petit mobilier, essentiellement des accessoires vestimentaires datant, par comparaison avec la sphère funéraire de l’aire romano-burgonde, privilégie la première moitié/milieu du VIIIe siècle, de même que les récipients céramiques, en particulier les proportions de pâtes réductrice et oxydante qui constituent un bon marqueur chronologique (Faure-Boucharlat 2001).

L’établissement de Pratz le Curtillet illustre, comme d’autres en Franche-Comté et plus largement, un dynamisme de l’occupation à partir de la seconde moitié du VIᵉ siècle, rejoignant le constat réalisé dans la moitié nord de la France où l’on observe une vague importante de création d’habitats (Peytremann 1993). Cette montée en puissance de l’occupation rurale se traduit également dans le domaine funéraire par l’apparition de nombreuses nécropoles, enregistrées partout dans la région à partir du milieu de ce siècle. L’abandon du site, qui s’amorce au milieu du VIIᵉ siècle, s’inscrit dans une période d’abandon qui semble généralisée à cette première génération d’habitats médiévaux et annonce la période carolingienne, on ne peut plus discrète sur le plan régional. Cette phase constitue en effet un hiatus dans l’occupation en Franche-Comté, une situation qui soulève quelques questions. S’il est vrai que les critères d’identification de la céramique de cette période font complètement défaut, limitant d’autant la reconnaissance de ces sites, les datations radiocarbone engagées sur les habitats sont encore rares et contribuent à cette discrétion de l’occupation rurale des VIIIᵉ-IXᵉ siècles. Dans le domaine funéraire, on assiste à l’abandon pratiquement systématique, mais pas total, des nécropoles mérovingiennes de plein champ, sans que pour autant on connaisse les lieux où se pratiquent les nouvelles inhumations, hormis le sous-sol de quelques rares églises précoces, récemment documentées. Mais, là aussi, les changements de pratiques avec l’abandon des dépôts d’offrandes et de l’inhumation habillée nous privent de repères matériels. Les habitats de cette période sont particulièrement mal représentés en Bresse, Lyonnais et Dauphiné, et posent la question d’une « éclipse » carolingienne dans ces régions (Faure-Boucharlat 2001), alors qu’il est question de déprise dans l’aire méridionale (Raynaud 1990). Au nord de la Gaule cependant, même si l’on enregistre des fléchissements ponctuels selon les régions, le constat est bien différent avec une expansion et une vivacité de l’occupation carolingienne (Lorren, Périn 1997; Peytremann 1993). L’instabilité topographique qui caractérise bien souvent ces habitats, conjuguée à des surfaces ouvertes encore trop réduites, permet de nuancer ce constat, encore trop dépendant de l’état de la recherche actuelle. Une réorganisation progressive des campagnes peut conduire à des désertions d’habitats isolés et de domaines au profit de l’émergence de pôles plus attractifs. Ces phénomènes sont à mettre en relation avec la fixité des finages et la création de bourgs (Peytremann 2013), et pour corollaire, l’apparition d’édifices religieux et la mise en place progressive de l’encadrement paroissial des habitants. L’hypothèse d’un regroupement d’un habitat encore mobile en un point du territoire, à l’origine de la plupart des villages actuels, expliquerait partiellement cette situation (Lorren, Périn 1995) : les vestiges seraient situés dans des secteurs bâtis ou peu accessibles à la recherche de terrain. De ce point de vue, il incombe à l’archéologie d’investir ces espaces rapidement avant qu’ils ne disparaissent irrémédiablement sous les zones pavillonnaires et les aménagements divers. En effet, on constate que la majorité des habitats du haut Moyen Âge restent peu éloignés de ces vieux villages, et les exemples de ces occupations se multiplient au cœur de ces derniers pour peu qu’on les investisse.
Cultures, élevage et paysage

Les informations concernant le rapport de l'Homme à son environnement, les pratiques culturales et d'élevage sont plus fragmentaires, Pratz étant encore le seul établissement du haut Moyen Âge sur ce versant du Jura à avoir bénéficié d'études portant sur les macrorestes végétaux et les restes de faune. Comme dans d'autres domaines, les apports à la connaissance constituent de précieuses avancées, même si ces résultats n'ouvrent encore que des perspectives limitées faute de comparaisons. Par conséquent, on ne sait hélas presque rien des activités principales de la plupart de ces occupations de type agropastoral et de la gestion des terroirs. Ces approches, pourtant vitales pour ces communautés rurales, doivent nécessairement être mises en œuvre dans les problématiques de l'archéologie préventive au moment de la fouille, si l'on veut dépasser la simple forme de ces sites afin de documenter leurs principales raisons d'être.

L'établissement de Pratz fournit donc une première image des activités agricoles de cette époque et des ressources alimentaires disponibles, enrichie de données ponctuelles et de quelques sites voisins de ce massif (Develier-Courtételle) ou plus éloignés de la plaine de Saône (Genlis). L'analyse de la Vie des Pères du Jura apporte de son côté un éclairage qui vient compléter ce tableau. Plus objective cependant, les données archéologiques sont les plus à même d'enrichir nos connaissances de l'exploitation du milieu environnant. Du point de vue de l'outillage agricole et des activités artisanales, les fragments d'une scie en fer peuvent être rattachés à cette catégorie, bien que la taille réduite de ses dents évoque plutôt un travail de menuiserie. Une longue pointe à section quadrangulaire peut appartenir à une fourche, alors qu'une force évoque la tonte des moutons. Des éléments de sonnaille sont à relier à la présence de troupeaux. Les pierres à aiguiser témoignent de l'affûtage d'outils en fer, très probablement récupérés lors de la phase d'abandon du site. Des couteaux, d'un usage très polyvalent, ont pu participer à divers travaux de taille. Des alènes et des poinçons en fer sont liés au travail du cuir et des peaux. Les éléments de fers à cheval et de clous de ferrage attestent l'utilisation du cheval, dont quelques os sont retrouvés dans le corpus de faune, sans trace de consommation éventuelle.

L'analyse engagée sur les macrorestes révèle une agriculture variée, caractérisée par une polyculture des céréales (Millet, Blé nu/Froment, Avoine, Orge vêtue, Engrain et probablement Seigle) et des légumineuses (Féveroles et Pois), malgré des conditions de conservation défavorables. La culture d'arbres fruitiers est également attestée (Noyer, Prunier), parallèlement à la cueillette de ressources naturelles (fruits sauvages, noisettes). Le Millet commun est la céréale dominante à Pratz, particularité que l'on retrouve à Grozon (Jura) aux v°-vi° siècles et qui ne correspond pas aux autres habitats contemporains où elle n'apparaît que de manière anecdotique (Develier-Courtételle, Genlis). Sa présence dans cet environnement de moyenne montagne pourrait étonner de prime abord, avec un climat continental bien marqué qui n'offre pas les conditions optimales pour sa culture. Cependant, le développement assez court de cette céréale d'été est un avantage qui a pu être mis à profit, éventuellement comme culture de rattrapage, un argument qui pourrait en partie expliquer la part importante qu'elle tient dans le spectre carpologique. Le Millet semble être spécifique des cultures d'altitude, on la retrouve ainsi dans le Valais sous ces deux variantes (Millet commun et Millet des oiseaux) dans une fosse du v° siècle de notre ère, dans une fosse à Sion Sous-le-Scex et à Brigue, dans l'agglomération de Waldmatte (Rachoud-Schneider 1998).
L’établissement de Pratz le Curtillet

Liée essentiellement aux activités métallurgiques, l’analyse anthracologique a finalement révélé une absence apparente de sélection du combustible, mais plutôt une large collecte opportuniste de biotopes très variés, concernant aussi bien la hêtraie-sapinière que les lisières et les haies. L’impact de l’Homme sur la forêt se traduit par l’existence d’espaces ouverts en phase de reconquête forestière et de friches, qui témoignent à la fois d’un stade avancé de dégradation de forêts plus densément peuplées et d’une éventuelle pression par des défrichements de surfaces agricoles précédemment boisées. L’exploitation de ce milieu, composé d’essences pionnières comme le Bouleau et le Noisetier, pourrait être la marque d’une agriculture pratiquant la jachère. Seule une multiplication de ces approches carpologiques et paléo-environnementales pourra éclairer notre compréhension des systèmes agronomiques et permettre de discuter des différences qui se dessinent entre les différentes occupations rurales de cette époque où l’altitude joue un rôle non négligeable.

L’élevage affiche l’habituelle trilogie Bœuf-Porc-Caprinés dominant l’alimentation médiévale. L’abattage d’animaux jeunes (Bœufs et Porcs) indique un approvisionnement carné tourné surtout vers de la viande de bonne qualité et une production bouchère. La part importante des restes de bœuf indique probablement une exploitation de la force motrice destinée aux travaux de labours et à une agriculture extensive. Si la prépondérance presque similaire en caprinés et en porcs est observée entre les établissements de Pratz le Curtillet et Courtedoux-Creugenat (Jura suisse), des différences régionales apparaissent toutefois, ces deux sites se distinguant nettement de l’habitat de Develier-Courtételle (Jura suisse) et de celui plus éloigné de Genlis (Côte-d’Or) avec des proportions de bœufs bien inférieures. Agneaux, porcelets, veaux et viandes de boucherie figurent au menu, avec probablement quelques pièces de sanglier, de cerf et un peu de volaille. Un fragment d’andouiller de cerf et un bois de chute retrouvés dans l’atelier artisanal constituent les seuls témoignages du travail de l’os au sens large du terme, puisqu’il s’agit plus de prélèvements avec traces de découpe que de façonnage proprement dit. Herbage et pâturage, notamment en forêt pour les porcs, sont les espaces nécessaires à cette gestion du bétail, ainsi qu’étable et fenil, à cette altitude, pour la saison hivernale. La faiblesse quantitative des lots étudiés, toutes approches confondues, et le manque de comparaisons régionales empêchent d’aller plus loin dans ce constat. Encore pionnières à l’échelle régionale, ces études constituent un premier jalon de notre connaissance des pratiques agricoles du massif et de la gestion de ce terroir de moyenne montagne à cette époque.

Les activités métallurgiques : une ruée sur le fer

Longtemps considéré comme un âge du Bois et de la Terre, avec une connotation péjorative, le haut Moyen Âge s’affirme aussi comme un âge du Métal, tant l’importance du fer s’apprécie par la multitude des unités productives reconnues par prospection au sol. De part et d’autre du massif du Jura, pratiquement tous les habitats du haut Moyen Âge livrent des témoignages du travail du fer, alors que de véritables ferriers sont identifiés dans le district minier de Berthelange (Doubs), à 25 km en amont de l’ancienne capitale romaine de Besançon/Vesontio. Mais, en définitive, peu de ces établissements ruraux révèlent une véritable organisation d’une activité métallurgique, hormis quelques foyers de forge et de rares structures liées à la réduction du minerai. Les restes d’un bas fourneau, utilisé pour la réduction du minerai de fer, et une forge sont attestés sur
le petit habitat de Chevenez Lai Coiratte (Jura suisse), aux vie-viie siècles, avec plus de 800 kg de déchets métallurgiques (Évéquoz et al. 2005). À Bessoncourt les Rives de l’Autraluche (Territoire de Belfort), un foyer de combustion destiné au raffinage d’éponge de fer est localisé au nord-est de bâtiments de plain-pied, et des déchets, en faible quantité (3,8 kg), permettent de reconnaître également le travail de forge lors des vie-viie siècles (Joan 2010).
À Pratz, la taille et les infrastructures du bâtiment abritant l’atelier de forge sont assez exceptionnelles et supposent une production supérieure au besoin de cet établissement, voire une redistribution locale, même si cette hypothèse n’est pas probante, il est vrai, au regard de la quantité réduite de déchets et de la modestie des diamètres des culots de forge. La quantité de déchets est de loin inférieure aux 4 tonnes comptabilisées sur l’habitat de Develier-Courtételle, même en apportant une correction sévère, la chronologie de ce site se prolongeant jusqu’au dernier quart du vie siècle. L’étude interdisciplinaire entreprise sur l’assemblage des déchets scorifiés et métalliques permet de restituer l’activité d’un atelier aux activités de forge diversifiées et une production orientée vers la fabrication de produits plats aux volumes assez divers. La maîtrise du savoir-faire spécialisé est également documentée par plusieurs indices : la pratique de l’épuration de masse brute de réduction conduite avec un minimum de perte, la mise en forme par assemblage de feuilles traduisant un haut degré de réalisation technique et la qualité des assemblages. Le fer n’est pas le seul métal travaillé dans cet atelier, puisque des fragments de tôles et de gouttelettes de bronze ont été retrouvés à proximité de deux foyers métallurgiques. La présence d’un flan monétaire sur le sol de cet atelier est assez exceptionnelle dans ce contexte, les autres exemplaires répertoriés provenant tous du domaine funéraire. Cet objet pourrait donc évoquer une activité de faux monnayage.
L’importance de l’industrie du fer dans le massif du Jura, où une dissémination de petites unités productives est reconnue par des prospections pédestres, révèle une véritable « ruée sur le fer ». Cette frénésie de l’activité sidérurgique, de la production à la forge, se retrouve pratiquement sur l’ensemble de l’habitat des vie-viie siècles en Franche-Comté, à côté d’autres types d’artisanats (travail du textile, du bois et d’autres matériaux). Elle s’exprime avec une ampleur jusqu’alors inégalée et atteste un mode de production beaucoup moins centralisé, domestique serait-on tenté de dire, coexistant avec de véritables centres de production, à l’exemple des ateliers de céramiques. L’importance de cette activité artisanale se reflète sans doute dans la richesse de la nécropole de Saint-Vit, dans le Doubs, qui illustre la maîtrise des Francs sur le contrôle économique de la région minière de Berthelange, en amont de l’ancienne cité de Besançon (Billoin 2004).
Cette multiplication d’ateliers disséminés dans la campagne reflète vraisemblablement un besoin grandissant en fer et évoque un réseau de distribution à échelle plus réduite, selon une nouvelle forme d’économie contrastant avec l’époque antique aux centres de production très centralisés. Ce mouvement dépasse le cadre régional et on l’observe dans tout l’est de la France et la Suisse, comme le montrent les études conduites depuis une vingtaine d’années (Serneels 1993; Eschenlohr 2001; Leroy 2009; Laurent et al. 2012). Ce dynamisme entourant le fer contredit l’image misérabiliste d’une pénurie de métal parfois évoquée à cette époque, image infirmée également par les fréquents dépôts d’objets métalliques en contexte funéraire et, plus rarement, d’habitat.
Bâtir en pierre : une spécificité du Jura?

L’établissement rural de Pratz révèle l’utilisation d’une architecture en pierre qui tranche singulièrement avec les habituelles constructions en bois, si caractéristiques du haut Moyen Âge. Les rares usages de la pierre comme matériau de construction ont souvent été mis sur le compte d’occupations plus tardives, à partir de la période carolingienne, suivant un modèle évolutionniste des constructions en quelque sorte, selon lequel ce passage du bois à la pierre marquerait la sortie de « l’âge du Bois » que constituerait le haut Moyen Âge (Chapelot, Fossier 1980 ; Pesez 1998). De fait, les constructions faisant appel à la pierre sont rarissimes pour la période mérovingienne à l’échelon national. Les qualités de ces constructions ont été longtemps considérées comme réservées à des bâtiments édilitaires, tantôt religieux avec des églises, ou civils avec des fermes seigneuriales ou des parties de cour royale – comme dans l’habitat de Lansen-Bettenach, près de Bâle (Schmaedecke, Tauber 1992) –, ou encore administratifs – bâtiment de Porrentruy la Rass (Demarez 2003), par exemple (fig. 116, n° 3). Les vastes constructions maçonnées prolongeant l’occupation de la pars urbana de la villa antique du Parc de la Grange à Genève, révèle une élite implantée dès le Haut-Empire qui continue d’afficher un style de vie fastueux, sans rupture majeure dans le haut Moyen Âge tardif (Terrier 2002 ; Haldimann et al. 2001). L’établissement fortifié du Camp du Château, près de Salins-les-Bains dans le Jura, a livré deux autres bâtiments en pierre (fig. 116, n° 5), dont une église (Gandel, Billoin 2013). Au-delà de l’Arc jurassien, les vestiges d’habitats sur solins du VIIe siècle de Biéville-Beuville, dans le Calvados, sont interprétés prudemment comme le siège d’un domaine aristocratique de type curta (Hincker 2007). Les quatre bâtiments à fondations en pierre de l’habitat de Serris les Ruelles, en Seine-et-Marne, datés d’entre la fin du VIIe siècle et le VIIIe siècle, sont également considérés comme un ensemble appartenant à une ferme aristocratique (Fourcray, Gentili 1995). Dans les régions plus méridionales, la présence d’une élite est également associée à des constructions en pierre : sur l’établissement de hauteur de Larina, à Hières-sur-Amby (Porte 2011), ainsi qu’à Poncin la Châtelarde, deux sites, dont la forme d’occupation pourrait être qualifiée de « protoseigneuriale » (Faure-Boucharlat, Vicher 2001). Le vaste établissement du Bivan à l’Albenc, dans l’Isère (De Klijn 2001) reprend l’habitat antique qui l’a précédé et constitue un parallèle frappant avec la ferme de Dassargues, dans l’Hérault (Garner et al. 1995). D’autres exemples de constructions en pierre se rencontrent essentiellement au sein d’habitats perchés, du massif du Jura à la Méditerranée, le plus célèbre étant le Roc de Pampelune, dans l’arrière-pays montpelliérain (Schneider 2010). À l’évidence, ce recours à la construction en pierre, indéniable source de confort et marque d’un investissement plus coûteux, n’est pas toujours synonyme d’une occupation à caractère édilitaire, ni une spécificité des terrains calcaires ou encore le reflet d’une culture méditerranéenne. Les grands bâtiments résidentiels en pierre de Porrentruy et de Delle (fig. 116, n° 3 et 4) livrent un mobilier commun, alors qu’a contrario, l’abondance du mobilier associé à l’un des édifices sur poteaux de Develier-Courtételle illustre bien ce constat (Billoin, Fellener 2013). Le bâtiment de Sézegnin (fig. 116, n° 1), dans la région de Genève, à solins en pierre maçonnée mesurant au moins 15 m sur 20 m, associé à plusieurs fonds de cabanes et à de nombreux trou de poteaux, est interprété comme une modeste villa (Privati 1983). Deux édifices construits sur des solins en pierre ont été retrouvés à Develier-Courtételle (Jura suisse), parmi les nombreux bâtiments de
plain-pied sur poteaux constituant ce hameau intégré dans un réseau d'échange diversifié (Federici-Schenardi, Fellner 2004). Un bâtiment rectangulaire sur solins en pierre aux dimensions plus modestes a été découvert récemment sur l'habitat des vi°-vii° siècles de Courtedoux (Jura suisse), où il côtoie des constructions en bois et des fonds de cabanes (Delex Sheikh, Amiot 2007). Un autre bâtiment en pierre du vi° siècle, issu d'une fouille archéologique toute récente à Grozon (Jura), au sein d'accumulations cendo-charbonneuse, à l'emplacement d'une saline du haut Moyen Âge, est clairement identifié comme un bâtiment artisanal de chauffe (Billoin 2013 et inédit).

Ce tour d'horizon des diverses constructions utilisant la pierre à l'époque mérovingienne illustre surtout la diversité de l'habitat rural, tant au niveau des modes de construction que dans les types d'implantation des établissements, traduisant des manières d'habiter et des statuts divers. Il serait cependant réducteur d'opposer une architecture faisant largement appel à la pierre, trop schématiquement rapportée à un statut social élevé, à une architecture de bois caractéristique de modestes occupations agropastorales (fig. 117 et 118). Loin d'être défavorisé, le domaine religieux utilise cependant largement la terre et de bois, à l'exemple des nombreuses églises bâties en bois de la région de Genève (Terrier 2005). Cet usage du bois dans les ensembles religieux est confirmé par la description du monastère voisin de Pratz, rapportée ainsi dans la Vie des Pères du Jura: « Donc, un certain jour le monastère flamba. Comme il était construit en bois et depuis fort longtemps, et que non seulement il comportait un bloc de cellules accolées les unes aux autres par leur charpente, mais avait été doublé par un étage bien agencé, il fut si soudain réduit en cendres, que le matin, non seulement il ne restait plus rien des bâtiments, mais que le feu lui-même, activé par un alignement parfaitement sec, était presque entièrement éteint. » (Martine 1968, p. 162). Cet extrait témoigne d'une architecture boisée élaborée et invite à nuancer l'interprétation des modes de construction en termes de hiérarchie sociale.

Les ressources du milieu, à commencer par le bois, abondant dans cette région de montagne, ou le calcaire du sous-sol, ont pu naturellement dicter le choix des matériaux de construction. L'adoption de la pierre dans une filiation avec l'architecture antique – comme cela peut être envisagé sur les sites de Poncin, de L'Albenc ou de Genève cités plus haut – ne peut guère être retenue pour Pratz où l'établissement est une création ex nihilo, dépouvre de legs gallo-romain, même si de discrets témoignages d'occupation de cette période sont enregistrés à proximité et font l'objet d'une récupération très ponctuelle. En définitive, les exemples de plus en plus nombreux de ces édifices mis au jour dans l'Arc jurassien, malgré un effectif assez faible d'habitats ruraux étudiés, posent la question d'une spécificité propre à cette région de montagne. L'abondance du bois (48% du massif du Jura est encore boisé aujourd'hui) ne se traduit qu'imparfaitement dans les matériaux mis en œuvre dans la construction, un paradoxe déjà relevé pour l'architecture paysanne traditionnelle plus récente (Royer 1978, p. 21). En effet, la répartition géographique entre habitat en bois et bâti en pierre révèle une préférence pour l'architecture faisant appel à la pierre dans le massif montagneux (fig. 119).
Fig. 117 : Tableau synoptique des constructions en pierre en Franche-Comté, 2014 (D. Billoin).
Fig. 118 : Tableau synoptique des bâtiments en bois en Franche-Comté, 2014 (D. Billoin).
Voies de circulation, voies commerciales

Abondant et varié, le mobilier de l’établissement de Pratz permet d’aborder la question des échanges et des relations commerciales, liés au travail métallurgique d’une part et à la présence de matériels d’importation dans la vaisselle d’autre part. Ces données, auxquelles s’ajoutent d’autres critères comme la qualité de l’alimentation carnée, l’aspect architectural du site et de son organisation générale, constituent des estimateurs de pratiques de distinction sociale.

Qu’il s’agisse de la céramique bistre – dont une partie du service provient des ateliers du Val de Saône (Sevrey) d’après les analyses chimiques des pâtes –, de récipients en pierre ollaire – fabriqués dans les Alpes occidentales, comme le démontrent les analyses pétrographiques –, ou encore de meules en basalte transportées depuis le Massif central, une partie de ce mobilier du quotidien illustre clairement le fait que cette communauté rurale était reliée au commerce à longue distance. Ces échanges économiques semblent préférentiellement tournés vers le sud, la céramique de l’établissement de Pratz offrant des parentés avec les ensembles des vallées de l’Ain et de la Saône (Poncin, Château-Gaillard, Trévoux, Beynost), bien que l’on observe également l’arrivée modeste de produits du nord-est de la Gaule, comme les vases à panse biconique à pâte grise. La prépondérance des roches vertes du premier groupe de récipients en pierre ollaire révèle un approvisionnement massif à partir du secteur du Val d’Aoste, au sud des Alpes, par les cols, en particulier celui du Grand-Saint-Bernard, et un transit qui s’effectue en direction du Plateau suisse et du Jura (fig. 119). La haute vallée du Rhône joue également un rôle dans ces circuits commerciaux, les gisements de pierre ollaire étant situés à l’extrémité des vallées alpines de la rive gauche de ce fleuve. La présence de la vaisselle en pierre ollaire sur de nombreux sites du haut Moyen Âge, de part et d’autre du massif du Jura et au-delà, permet ainsi d’esquisser les voies de ce commerce (Billoin 2003b, 2004).
La diffusion de ces différents produits montre que les circuits commerciaux hérités de l’Antiquité sont toujours en place, notamment pour la distribution très étendue du service bistre des ateliers du Val de Saône (Marti et al. 2006; Bonifay, Raynaud 2007). L’ample diffusion de cette vaisselle, qui irrigue les vallées de la Saône et du Doubs, le Jura et la vallée du Rhône jusqu’en Méditerranée, reflète ce dynamisme commercial et invalide la notion de repli si souvent invoquée pour les campagnes du haut Moyen Âge (fig. 120). De nouvelles productions apparaissent, à l’exemple de la vaisselle en pierre ollaire qui connaît un dynamisme sans précédent dans son exportation depuis la façade occidentale du massif alpin (Billoin 2004). Des imitations de ces récipients en pierre ollaire sont d’ailleurs connues en céramique, ce qui démontre la valeur accordée à ce type de vaisselle (Billoin 2004; Marti et al. 2006; Faure-Boucharlat 2001). Des récipients métalliques sont également présents à Pratz sous la forme de quelques fragments d’éléments de préhension, une vaisselle qui caractérise des milieux privilégiés et les tombes des élites lorsqu’elle est retrouvée.

Le statut social de l’établissement

La part importante des récipients en pierre ollaire (19 %) et en verre (8,5 %) dans le vaisselier (fig. 121), sans aucune mesure avec les autres établissements de l’Arc jurassien, contribue à caractériser le statut social des occupants du Curtillet. Par comparaison, cette catégorie de vaisselle est inférieure à 2 % à Develier-Courtételle, sur le versant suisse, un habitat qui n’offre cependant pas les signes d’une occupation de basse condition sociale. Ces récipients apparaissent de manière anecdotique ailleurs, sur des occupations essentiellement à vocation agropastorale. Le rôle de marqueur social de la vaisselle en pierre ollaire a été mis en évidence à mesure que l’on s’éloigne des régions de production (Billoin à paraître). Elle est ainsi associée à des contextes élitaires, en nombre
sur les établissements perchés, et attestée parfois très loin des régions de production sur des occupations monacales. Un lien avec des activités métallurgiques a également été relevé (Gross, Zetter 1990-1991, p. 23 ; Billoin 2003b), mais plus que la participation de ces récipients à une étape de fabrication, encore à démontrer, c’est davantage la richesse que procure cette activité artisanale qui semble prévaloir. Dans la législation burgonde, les forgerons sont, en effet, en haut de l’échelle sociale des travailleurs, juste après les orfèvres, et sont parfois considérés comme des artisans sacrés ou prestigieux (Le Goff 1999, p. 33). Le prestige que recouvre cette activité se retrouve dans la richesse des tombes de forgerons (Decaens 1971).

L’analyse du hameau mérovingien de Develier-Courtételle met en avant l’importation d’un riche éventail de produits exogènes liés étroitement à la production d’objets en fer et représentant une monnaie d’échange (Eschenlohr et al. 2007). À Pratz, la production métallique est sensiblement plus réduite, même rapportée à la durée de vie de l’occupation, bien que cette activité semble mieux organisée au sein d’un bâtiment distinct de l’habitat.

Les restes métalliques font l’objet d’une récupération et sont parfois mis en réserve, comme cet ensemble de 20 objets en fer brisés, parfois de petite taille, découverts dans une petite fosse de l’établissement de Delle la Queue au Loup, au nord de la Franche-Comté, une structure qui évoque une forme de thésaurisation soulignant la valeur accordée à ce métal (Billoin 2010).

La Vie des Pères du Jura comporte également un passage significatif à cet égard :

L’alimentation carnée constitue l’un des autres arguments habituellement utilisés pour caractériser les conditions de vie d’une communauté et la richesse relative de ses habitants. L’abattage d’animaux jeunes n’ayant pas atteint le maximum de leur charge pondérale est un indice d’une occupation privilégiée, alors que la part de la chasse, autour de 1 %, apparaît moins déterminante dans cette lecture sociale.

Le petit mobilier ne révèle pas d’objets particuliers dénotant un signe de distinction sociale, mais la prudence s’impose devant la faiblesse de l’effectif. L’abondance même de ces objets peut-être relativisée, une partie d’entre eux étant vraisemblablement liés à la production de la forge. Dans cet environnement, des fragments de verres plats font exception puisque les autres lieux de découverte dans le Jura, hormis le site de hauteur de Ménétru-le-Vignoble,
correspondent à des occupations religieuses sur les églises paléochrétiennes du *castrum* de Mandeure, de Luxeuil et du Camps du Château à Salins-les-Bains.

Si, isolément, ces marqueurs matériels n’apparaissent pas déterminants, l’ensemble aide cependant à entrevoir un niveau assez élevé dans la hiérarchie sociale. Le choix d’implanter le site au sein de ce territoire, la forme, l’ampleur et la partition des édifices participent également à cette définition d’un niveau de vie. Le lieu privilégié de l’établissement, à faible distance d’une voie de première importance et sur un plateau offrant de rares terrains plats propices aux activités agropastorales, témoigne d’une capacité d’appropriation du territoire. Les notions d’espaces et de rapport au milieu constituent en effet, un estimateur social archéologique (Burnouf 2007). Au-delà d’un possible aspect symbolique, la proximité avec la voie se révèle stratégique du point de vue de la desserte et de l’accessibilité des lieux d’échanges. Loin d’une installation par défaut, l’implantation a fait prévaloir les meilleurs critères géographiques et environnementaux. La manière de construire, d’habiter et de gérer les diverses activités révèle encore un certain niveau de confort et d’aisance matérielle, comme en témoignent notamment les aménagements internes de l’édifice résidentiel et l’organisation de l’atelier métallurgique.

En définitive, l’établissement de Pratz se distingue décidément des occupations agropastorales, si bien que l’on serait tenté de le considérer, de prime abord, comme un habitat élitaire, à l’exemple des interprétations habituellement formulées pour ces habitats en pierre considérés comme exceptionnels à cette période (Peytremann 2013). Certes, ce domaine rural offre toutes les conditions de vie aisée et oriente l’interprétation vers un rang social supérieur. Mais l’interprétation n’est pas si simple, dans la mesure où la plupart des habitats de hauteur s’illustrent par des implantations qui affichent des signes plus évidents encore d’un statut supérieur, comme les établissements fortifiés de Larina à Hières-sur-Amby (Porte 2011) et du Camps du Château à Salins-les-Bains (Gandel, Billoin 2013), avec des équipements d’ampleur (remparts et église). L’établissement de Pratz se situe donc à un niveau intermédiaire entre l’habitat agropastoral de terre et bois et l’habitat perché fortifié. Il est certes représentatif d’une élite, mais ne se positionne pas au sommet de la hiérarchie sociale.

La découverte de cet établissement mérovingien dans les hautes terres jurassiennes a créé un certain étonnement en 1999, heurtant en quelque sorte un présupposé faisant de ce massif en altitude un secteur inhospitalier peu propice à l’installation humaine. Une vision somme toute assez proche et conforme au « désert » des traditions hagiographiques, recherchées pour la solitude par ces implantations monastiques du haut Jura et caractérisé par un vaste couvert forestier. Qualifié souvent de barrière naturelle, ce vaste massif forestier est traditionnellement considéré comme répulsif et non peuplé avant l’arrivée des moines (Voisin 1977), devant attendre les grands défrichements du « beau Moyen Âge » des historiens (Duby 1956; Daumas, Tissot 2004). Pourtant, si ce massif a effectivement constitué une certaine barrière topographique, il n’a jamais constitué un obstacle pour la circulation comme l’attestent les grands itinéraires qui le traversent, en particulier la voie reliant Saint-Claude à Genève, citée d’ailleurs à deux reprises dans la *Vie des Pères du Jura*. L’étude de ce texte hagiographique relatif l’installation de moines à la fin du v° siècle, à l’origine de la puissante abbaye de Saint-Claude, dans l’environnement proche de l’établissement mérovingien de Pratz, révèle que l’isolement de cette communauté était tout relatif. Le monastère de Condat/Saint-Claude est situé à proximité d’un « chemin qui, franchissant les monts, conduit à Genève » (Martine 1968, p. 403 et 405), ces moines ne sont en effet pas coupés du monde et se déplacent
fréquemment, comme d'autres dans le Jura, dont les monastères ne sont jamais très éloignés d'un axe de circulation, à l'exemple de Romainmôtier fondé au v^e siècle, près de la voie entre l'Italie et la Gaule (Auberson 1997), et plus au nord, de Mouttier-Granval au vi^e siècle, près de la route menant au col de Pierre Pertuis (Tauber 2006). Entre deux monastères tout proches, La Balme/Saint-Romain d'un côté et Lauconne/Saint-Lupicin de l'autre, l'établissement mérovingien du Curtillet n'est à l'évidence pas isolé sur ce plateau du Lizon, traversé par une grande voie de circulation, alors que l'occupation de ce secteur géographique remonte au moins au premier âge du Fer, comme l'attestent les découvertes archéologiques récentes. Dans cet environnement particulier, cet itinéraire et la présence des communautés religieuses constituent des arguments attractifs. En fin de compte, la présence d'un axe de circulation majeur conjuguée à une topographie offrant de vastes espaces exploitables – une situation peu fréquente dans ce massif – illustre bien le choix territorial de cette implantation. En revanche, il est bien difficile de répondre à la question du statut de cet établissement rural implanté entre ces deux monastères sans évoquer un possible lien de dépendance ou d’appartenance. Le moins que l’on puisse avancer comme élément de réponse, sans risque de surinterprétation, est la différence notable entre les constructions en pierre de cet établissement et la description du monastère exclusivement en bois d’après le texte hagiographique.

Au terme de cette étude, l’établissement mérovingien de Pratz modifie profondément le regard que l’on portait sur l’habitat en Franche-Comté, méconnu avant les années 2000, contribuant ainsi à se libérer des pesanteurs de l’historiographie et à lever le voile « des brumes du haut Moyen Âge jurassien »². Les avancées simultanées réalisées de part et d’autre de ce massif font aujourd’hui l’habitat, et plus largement l’occupation du sol, deviennent un objet de recherche à part entière. Cette publication se devait donc de « défricher » des aspects de la vie quotidienne de l’époque mérovingienne, d’ouvrir des pistes, de poser les bases de référentiels, certes modestement, mais qui ne prendront tout leur sens qu’une fois complétés peu à peu, fouille après fouille. Si un pas a été franchi, souhaitons que d’autres suivent et nourrissent de nouvelles études.

Chapitre 6
La Vie des Pères du Jura

Corinne Goy avec la collaboration de David Billoin

Récit hagiographique rédigé par un moine anonyme au début du Ve siècle1, la Vie des Pères du Jura (Vita Patrum Jurensium) relate les prémices du monachisme en Séquanie à travers les vies de Romain, Lupicin et Oyend, pères fondateurs du monastère de Condat2. Cette chronique, retraçant les quatre-vingts premières années d’une communauté religieuse, se rapporte à des événements se déroulant dans le Haut-Jura, non loin de Pratz, dans le courant du Ve siècle. Ce texte de premier ordre est riche d’informations concernant le haut Moyen Âge : outre son intérêt manifeste pour la connaissance monastique et spirituelle d’une congrégation religieuse, ce récit livre des renseignements sur des domaines aussi divers que la topographie, l’environnement, la nourriture et les techniques de construction. Son traducteur, François Martine, a montré tout l’intérêt du texte en l’enrichissant d’une analyse critique minutieuse (Martine 1968). Depuis, il est régulièrement sollicité par les archéologues à propos de l’architecture (Faure-Boucharat 2001, p. 92) ou de l’alimentation (Mordefroid 1995, p. 55-57), par exemple.

Toutefois, à notre connaissance, aucune étude n’a été consacrée à l’ensemble du texte pour en extraire les occurrences concernant la vie quotidienne susceptibles d’apporter un autre éclairage, éventuellement complémentaire, que celui fourni par l’archéologie ; cet exercice périlleux s’il en est, a fortiori sans être spécialiste des textes et en particulier de ce genre littéraire à caractère apologétique, oblige à la plus grande prudence. Les thèmes retenus ici concernent l’environnement et la mise en valeur du territoire – par le biais des aménagements divers, de l’agriculture et du jardinage –, l’architecture et les techniques de construction, ainsi que certains aspects de la vie quotidienne ; ces indications constituant la « toile de fond » du récit, en somme le cadre plutôt que le discours idéologique, nous espérons avoir échappé aux topoï propres à cette littérature hagiographique.

Résumé du récit

Vers 430-435 le premier père, Romain, se retire du monde pour vivre en ermite. L’emplacement de son refuge est soigneusement choisi : après avoir longuement parcouru les forêts avoisinantes, Romain s’installe dans un endroit reculé au milieu de bois impénétrables ; aucun chemin n’existe en ce lieu pour gagner « le territoire des Équestres »3 [9], et il faut, à un homme courageux et téméraire, plus d’une « longue journée de solstice » [9] pour gagner le lieu de retraite du reclus à travers la forêt. Cet isolement paraît plus relatif à la fin du Ve siècle quand l’Anonyme signale qu’Oyend, à l’époque où il n’était encore que simple

2. Selon les périodes, le monastère primitif des Pères du Jura est dénommé Condadisco francisé en Condat (celte), Saint-Oyan (-de-Joux) aux époques carolingienne et médiévale, puis Saint-Claude à l’époque moderne (Moyse 1973, p. 56, note 5).
4. Pour alléger les renvois bibliographiques concernant la Vie des Pères du Jura, ne seront mentionnés ici que les paragraphes de la traduction de François Martine (1968). Pour accéder aux références bibliographiques complètes, se reporter au tableau 43.
moine, « dormait au-delà du monastère [...] tout près du chemin qui, franchis-
sant les monts, conduit à Genève » [153]. Romain choisit un terrain favorable
à la culture au confluent de deux rivières, la Bienne et le Tacon, et au pied de
trois montagnes. Il s’installe à proximité d’une source, sous un grand sapin dont
les frondaisons l’abritent des intempéries, et se nourrit de baies sauvages, mais
egalement des légumes qu’il cultive. Avant de quitter sa maison natale, il s’était
en effet muni de « semences et [d’] une pioche » [10] afin de pourvoir, seul, à sa
subsistance. Mais cette solitude ne dure pas, et la renommée de Romain attire
de nombreux disciples en ces lieux: son frère cadet Lupicin tout d’abord, deux
jeunes clercs de Nyon en Suisse par la suite, puis d’autres adeptes tentés par la
vie monastique, voire des séculiers attirés par les dons de guérisseurs des deux
frères. On passe ainsi peu à peu de l’érémitisme au cénobitisme. Après quelques
tâtonnements concernant les usages, les règles de vie communautaires se fixent
sous l’abbatiat d’Oyend vers la fin du Ve siècle (Moyse 1973, p. 39). Sous la
pression démographique des disciples de Romain et de Lupicin, toujours plus
nombreux, les moines se voient contraints de défricher de nouvelles terres, plus
propices à l’agriculture que les champs précédents. Le nombre croissant d’arri-
vants nécessite également de nouvelles constructions: un monastère de femmes
sera donc édifié à la Balme accueillant 105 moniales dirigées par la propre sœur
de Romain et de Lupicin, Yole [25], et un autre à Laucone abritant 150 frères
au milieu du Ve siècle [24]. Les deux autres opuscules relatent ensuite la vie de
Lupicin, puis celle d’Oyend que l’Anonyme a connu. Romain (mort vers 460)
sera enterré dans le monastère de femmes de la Balme, Lupicin (mort vers 480)
à Laucone; quant à Oyend (mort vers 514), il sera inhumé à Condat.

Environnement et mise en culture du territoire

L’emplacement et la topographie du site de retraite de Romain sont amplement
décrits par l’auteur. Le Jura apparaît comme une contrée rude, aux montagnes
largement couvertes de forêts, alors que plaines et plateaux accueillent cultures
et pâturages. Le texte évoque les sites d’implantation des trois monastères de
Condat, de Laucone et de la Balme avec force détails conformes à la réalité.
Les mentions de « forêts » sont relativement fréquentes dans le récit de l’Ano-
ynme, notamment au début, et dès les premiers paragraphes, il cite les « forêts
de pins et de sapins du Jura » [3]; l’auteur oppose ces forêts inhospitalières
t’à la riche plaine cultivée visible au loin [8]. Lorsque Romain cherche un lieu
retiré du monde pour vivre en ascète dans la solitude, il pénètre dans « les forêts
de l’environnement de sa retraite: Romain « finit par trouver, au-delà, parmi
des vallées bordées de rochers, un endroit découvert propice à la culture: là,
les escarpements de trois montagnes s’écarteront un peu l’un de l’autre, laissant
entre eux un replat de quelque étendue. Comme en ce lieu se rejoignent les lits
de deux cours d’eau, le site où se « constitue » une rivière unique ne tarda pas
t’à être appelé couramment Condadisco » [6]. Cette description topographique
s’applique bien au site de la ville de Saint-Claude construite au confluent de la
Bienne et le Tacon, sur une terrasse encore occupée aujourd’hui par l’ancienne
abbaye, environnée des monts Bayard et Chabot et de la montagne d’Avignon.
Plus tard, quand la population augmente, les moines défrichent une forêt proche
de Condat pour se procurer de nouvelles terres arables: « dans les forêts
voisines, nullement dépouvezd’endroits moins en pente et plus fertiles, [ils] cou-
pèrent les sapins, [ils] arrachèrent les souches; avec la serpe, ils défrichèrent et

5. Saint-Romain-de-Roche à Pratz.
7. Selon le traducteur, ce terme semble être le
dérivé ou un composé du celtique Condate
signifiant « confluent ».

Enfin, lors de l’établissement du monastère de femmes de la Balme et la construction de la basilique, l’auteur détaillé la région de Saint-Romain-de-Roche à Pratz avec sa « falaise élevée, dominée par un rocher naturel et bordée par un arc rocheux recelant dans ses flancs de vastes cavernes [25]. La plate-forme, surmontant des escarpements inaccessibles, et taillée par la nature au pied des parois élevées de l’arc rocheux, ne comportait, de ce côté-là, aucune issue; vers l’Orient, en revanche, après un petit défilé, on débouchait sur des terres et sur des sols unis » [25]. Cet extrait décrit fidèlement la bordure sud du plateau du Lizon au relief karstique escarpé, marquée par des falaises dominant la vallée de la Bienne; c’est dans cet environnement que sera construite, à l’époque romane, une chapelle dédiée à saint Romain. L’emplacement de l’établissement n’a toutefois pas pu être reconnu malgré des prospections engagées sur tout cet espace; seuls quelques éléments matériels recueillis dans la pente constituent les maigres indices d’une occupation du haut Moyen Âge dans le secteur.

La nature des terrains entourant Condat est assez justement décrite dans les premiers paragraphes du récit, quand le nombre toujours grandissant de disciples de Romain et de Lupicin oblige les moines à se mettre en quête de nouveaux territoires. Les champs cultivés autour du monastère primitif, de taille réduite, sont implantés sur des collines pentues « au milieu des saillies rocheuses et des bosses, ruinés par le ruissellement fréquent sur un sol rocailleux » [22]. Ce sol pauvre explique la « médiocrité des récoltes et le rendement incertain [des champs] où la culture languissait » [22], n’assurant qu’à peine la subsistance de la communauté. Cette narration oppose une nature hostile et des terres inhospitalières à l’arrivée des moines, pour ensuite mettre en avant la réussite des implantations monastiques; dans ce récit édifiant, l’utilisation du paysage et de la forêt répulsifs exalte le rôle du saint. Le cadre climatique participe également, dans une certaine mesure, à cette mise en scène, ce qui explique sans doute la place de ces évocations dans ce texte, même s’il correspond assez bien au climat continental de la Franche-Comté. L’Anonyme décrit le climat jurassien dont « les rigueurs de l’hiver, non seulement recouvrent, mais ensevelissent le pays sous les neiges, au printemps en revanche, en été, en automne, ou bien le sol, surchauffé par la réverbération de la chaleur sur les rochers voisins, est en feu, ou bien les pluies désespérantes emportent dans les torrents, non seulement la terre ameublie pour les cultures, mais souvent aussi les terrains incultes et durs eux-mêmes, avec l’herbe, les arbres et les arbustes; le roc est mis à nu : la glèbe elle-même est enlevée aux moines, aux eaux elle est apportée » [23]. Ailleurs le climat est qualifié de « glacial », le pays soumis à des « froids rigoureux » [63]. Quant au sapin de Romain, qui l’abrite des « ardeurs de la canicule et la froideur des pluies » [8], il s’agit bien d’un « arbre-protecteur », familier [157] comme l’indique l’Anonyme, à l’exemple du palmier servant d’abri à saint Paul. Après avoir essarié, les moines s’adonnent au jardinage et à la culture sur les nouvelles terres conquises sur la forêt et propices à des récoltes abondantes. Les travaux des champs sont évoqués à plusieurs reprises dans le récit, mais brièvement et sans préciser le type de plante cultivée [64, 73]. De même, l’Anonyme fait allusion au jardinage à trois reprises lorsque Lupicin soigne un moine affaibli par un jeûne intense, en parlant du « jardin de la communauté » [73, 76] où sont
cultivées des « planches de légumes » [74], dénommées plus loin « plantes pota-
gères » [76]. Quelques mentions permettent de penser que les moines cultivaien-
ent au moins des raves, qualifiées de « raves grossières des champs » (céleri-rave,
chou-rave, betterave?), des choux [102] et des céréales comme l’Orge [38] ou
le Froment [69]. Le travail de la terre est également évoqué à travers l’outillage
agricole tel que charrue [24], sarcloir [76, 79] et pioche [10]. Plus étonnant est
ce morceau de « bois crochu » [76] dont se sert l’un des moines pour sarcler le
jardin du monastère. Par ailleurs sont mentionnées des haches [79, 163] et des
serpes [24] utilisées pour les défrichements forestiers. Une doloire [13], sorte de
petite hache dont se servent les charpentiers pour dégrossir les pièces de bois, est
evoquée lors de la construction de huttes. Les outils et probablement le métal
ont une telle valeur que lors de l’incendie qui ravage le monastère à l’époque
de l’Oyend, les moines récupèrent les fers, « seule partie incombustible des outils »
[163], dans les braises. Ailleurs, deux moines désirant s’évader du monastère
n’emportent que quelques vêtements, mais n’oublient ni leur sarcloir ni leur
hache [79].

Construction et mobilier

L’architecture est évoquée à plusieurs reprises dans le texte.
À l’origine, lorsque la communauté vivait encore selon les principes érémi-
tiques, les moines logeaient dans des cabanes [12] ou des huttes individu-
duelles [13] dont les pièces de bois étaient « dégrossies à la doloire et polies
avec le plus grand soin » [13]. Ces habitations, ailleurs dénommées « loge » [16]
or « logelette » [53], devaient être couvertes de matériaux périssables comme le
suggère la description du « pauvre toit » [53] de la cabane du diacre Sabinien
détruit par le diable seulement à l’aide de pierres. Après le passage à un mode
de vie cénobitique, les pièces encore individuelles où dorment les moines sont
qualifiées de « cellules » [28, 53, 81, 128, 162, 170].
L’incendie du monastère à l’époque d’Oyend donne l’occasion d’une description
plus précise du monastère primitif de Condat. « Donc, un certain jour, vers le
soin, la totalité du monastère, comme je le dis, flamba. Comme il était construit
en bois et depuis fort longtemps, et que non seulement il comportait un bloc de
cellules accolées les unes aux autres par leur charpente, mais avait été doublé
d’un étage bien agencé, il fut si soudainement réduit en cendres que, le matin,
non seulement il ne restait plus rien des bâtiments, mais que le feu lui-même,
actif par un aliment parfaitement sec, était déjà presque entièrement éteint »
[162]. Grâce à cet extrait, on constate que le monastère des Ve–VII siècles, bâti en
bois, est composé d’une série de cellules au rez-de-chaussée et d’un étage com-
partimenté en « salles » [25] dont la destination n’est pas précisée. L’existence
de cet étage, déjà sous-entendue par le terme de « grenier » [68-69] employé
auparavant dans le texte, est ici attestée et révèle le degré d’élaboration de cette
architecture en bois. Le monastère était également pourvu d’une dépense [75]
pour entreposer les provisions de table, d’un « quartier de prière » [28] et d’une
hôtellerie [28]. Après la reconstruction des bâtiments (en bois ?), le monastère
sera doté d’un réfectoire [170] et les moines dormiront dès lors dans un dortoir
commun [170, 178] dont « les lits seuls étant séparés » [170].
L’Anonyme signale également l’existence de canalisations en bois transportant
l’eau de la source près de laquelle s’installe Romain. Cette source est captée dès
l’origine, et ses eaux vives, aujourd’hui encore, sont conduites jusqu’au monas-
tère par des tuyaux de bois (7). L’emploi de tuyaux se prête particulièrement
bien au sous-sol calcaire affleurant de la région qui rend difficile tout creusement du fait de la dureté de la roche. D’autre part, les nombreuses anomalies karstiques constituent des obstacles certains dans l’acheminement en eau par de simples fossés par exemple. Ce type d’aménagement était encore utilisé récemment dans le secteur de Saint-Claude.

Dès l’origine, à Condat, le monastère possède un moulin et des pilons « établis sur la rivière voisine, sous le monastère même » [52]. La fonction de ce moulin n’est pas définie dans le texte et il a pu autant servir à écraser le grain, tamiser la farine ou tanner le cuir qu’à fouler le drap. François Martine suppose que les pilons cités dans le document pourraient correspondre à des martinets actionnés par une roue hydraulique.

Un autre paragraphe est consacré à la réparation du canal d’alimentation en eau du moulin dont la berge, constituée de claies, a besoin d’être surélevée. « Sabinien [...], aidé par des frères, s’appliquait à grand soin à exhausser la berge du canal amenant l’eau au moulin, afin d’activer le mouvement de la roue : on plantait une double rangée de pieux, on tressait entre ceux-ci, selon la coutume, des tiges de saule, et l’on remplissait l’intervalle avec un mélange de paille et de pierres » [57]. Ce moulin, construit sous l’abbatbat de Romain, qui meurt vers 460, révèle l’utilisation de la force hydraulique dès la première moitié du Ve siècle, avec des équipements assez élaborés ; ce type d’énergie, utilisée tout au long du Moyen Âge et atteignant un plein essor du XVe au XXVe siècle (Gimpel 1975, p. 9), joue un rôle primordial dans l’économie médiévale. À notre connaissance, la mention de ce moulin est la plus précoce pour ce type d’installation.

Alimentation et vaisselle

Le régime alimentaire de la communauté est évoqué succinctement dans l’ouvrage. À part les malades gratifiés de quelques faveurs – ils ont droit notamment aux œufs [66] –, les moines consomment des légumes et du pain, première source de calories durant le Moyen Âge et jusqu’au XIXe siècle (Gautier 2009), et proscrit la viande. Dans cette communauté pratiquant une économie de subsistance où la frugalité est de mise, la gourmandise est considérée comme un péché, souvenir de la gourmandise du premier homme, Adam, damné pour avoir mangé le fruit défendu. Ce péché de gourmandise est évoqué dans un long
paragraphe : après de très bonnes récoltes, certains moines « s’appliquèrent avec trop de soin à mettre dans leur ventre et leur gosier, non ce qui eût suffi d’après la règle et la mesure fixée, mais ce que permettait la surabondance » [36], excès punis rapidement par Lupicin. Les moines pouvaient également ramasser des baies et des fruits sauvages dans les forêts proches, comme le faisait auparavant l’ermite Romain [8]. Le vin, considéré longtemps comme un aliment, sert essentiellement de boisson [66], mais entre parfois dans la composition de la soupe [75]. Signalons également que le Froment, entreposé en gerbes dans le grenier du monastère entre deux moissons, n’est battu qu’au moment de son utilisation [70]. Cette mention est intéressante, car elle suppose un mode de stockage particulier, vraisemblablement à l’étage d’une construction, assurant à la fois la conservation par séchage et l’isolation au bâtiment.

Les mortifications que s’imposent certains moines, et particulièrement Lupicin, permettent par antinomie de connaître les ingrédients de quelques mets. Ainsi, pour punir des moines gourmands, Lupicin demande à son frère Romain de ne servir comme légère collation « [qu’] une simple bouillie de farine d’orge non tamisée [...] sans sel ni huile » [38]. La base de l’alimentation paraît donc être la bouillie de farine généralement mêlée d’eau, et parfois agrémentée d’huile ou de lait, puisqu’il est précisé que l’ascète Lupicin ne met pas « dans sa bouillie, la moindre goutte d’huile ou de lait » [66].

La soupe devait également tenir une place non négligeable dans l’alimentation, place qu’elle conservera pendant tout le Moyen Âge, et bien au-delà. Lupicin se contente généralement d’une soupe claire faite de pain trempé d’eau [67], mais il secourt un moine affaibli par une abstinence trop intense en lui faisant manger de petits morceaux de pain trempés dans du vin, le reste du repas étant enrichi d’une « large ration d’huile » [75]. Le même Lupicin « s’impose, outre des prières ininterrompues, des mortifications inlassables : les pousses crues de choux montés et, sans plus de cuisson, des raves grossières des champs » [102]. À la fin de sa vie, les moines, le voyant très diminué, « firent fondre en cachette une cuillerée de miel dans la coupelle où on allait lui donner un doigt d’eau » [116] que Lupicin, toujours selon ses principes d’austérité, refusera de boire...

Le Froment, mentionné une seule fois dans le texte alors qu’une disette menace la communauté des religieux et des laïcs [69], constitue l’une des céréales indispensables pour la fabrication du pain, des bouillies et des galettes « grossières et substantielles » [113] que les moines mangeaient quand ils étaient envoyés en dehors du monastère par l’abbé.

Les indications se rapportant à l’alimentation sont fortement teintées de connotations religieuses.

De rares ustensiles sont nommés par l’Anonyme, comme la coupelle utilisée par Lupicin pour boire [116] ou l’écuelle dans laquelle il mange une soupe à la cuiller [67]. Sont mentionnés par ailleurs deux récipients de stockage, une cruche à huile et un pot à farine [69].

Habillement et objets de la vie quotidienne

En toutes saisons, les moines portent une tunique [127], confectionnée en fourrure pour l’hiver [63]. Ainsi Lupicin « n’usa jamais que d’une tunique de peau, garnie de ses poils » pour se prémunir des frimas de ce « pays glacial » [63]. Sa tunique est composée « d’un assemblage de mauvaises fourrures, cousues ensemble, de quadrupèdes variés » [63]. Parfois nommée « caracalle » [127], Romain porte cette dernière uniquement l’été. Survivance du costume masculin

Les quelques pièces du vêtement ordinaire citées dans le texte paraissent héritées du costume de tradition gauloise. Il est vraisemblable que ces vêtements devaient ressembler à ceux portés par les classes populaires, et c’est sans doute par choix d’humilité ou par souci d’économie que ce type de vêtement est adopté par la communauté religieuse jurassienne.

Conclusion

Les témoignages matériels, certes succincts, contenus dans la *Vie des Pères du Jura*, apparaissent en filigrane dans l’histoire de l’implantation de la communauté religieuse. Ils contribuent à décrire par petites touches, et à travers le prisme religieux, le cadre de vie dans cette partie de la chaîne jurassienne.

Par ailleurs, si le texte insiste sur l’isolement des moines, ils ne sont pas pour autant entièrement coupés du monde. Ainsi le monastère de Condat se situe à proximité d’un « chemin qui, franchissant les monts, conduit à Genève » [153], une des voies d’accès (d’origine antique) permettant de traverser la montagne jurassienne. Moines et abbés entretiennent des relations épistolaires avec d’autres personnages, mais voyagent également, à Poncin dans l’Ain [43, 160], à Genève [45], à Agaune [44], à Tours [88] et même à Rome [155]. Par ailleurs,

la mention de l’hôtellerie [28] de Condat indique que des pèlerins séjournaient également dans le monastère jurassien.
Les difficultés d’approvisionnement en sel rapportées dans ce texte [157] renseignent sur l’exploitation d’une source salée dans le Jura. En effet, le « pays des Hériens » correspond vraisemblablement à l’actuelle ville de Salins-les-Bains (Jura), située au débouché du val d’Héry. Il s’agirait donc de la première mention d’une saline dans la région, celle de Grozon (Jura), toute proche, n’apparaissant dans les textes qu’avant 722, lors d’une donation à l’abbaye de Flavigny par un certain Wideradus (Moyse 1973).
Tabl. 43 : Thèmes abordés dans la *Vie des Pères du Jura*.

<table>
<thead>
<tr>
<th>thème</th>
<th>mots-clés</th>
<th>texte</th>
<th>mention</th>
<th>§, page</th>
</tr>
</thead>
<tbody>
<tr>
<td>agriculture</td>
<td>battage des céréales</td>
<td>battage des gerbes au fur et à mesure des besoins pour la nourriture</td>
<td>2</td>
<td>70, 315-319</td>
</tr>
<tr>
<td></td>
<td>créations des champs après essartage de la forêt</td>
<td>1</td>
<td>24, 265</td>
<td></td>
</tr>
<tr>
<td></td>
<td>taille des champs (trop réduits pour produire assez de nourriture à tous les disciples)</td>
<td>1</td>
<td>22, 263</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lupicin n'utilise que des socques (semelles de bois) pour se rendre aux champs</td>
<td>1</td>
<td>63, 309-311</td>
<td></td>
</tr>
<tr>
<td>cultures</td>
<td>richesse des cultures dans la plaine</td>
<td>1</td>
<td>8, 247-249</td>
<td></td>
</tr>
<tr>
<td></td>
<td>terrains pauvres à l'emplacement initial du lieu de retraite de Romain où « la culture languissait »</td>
<td>1</td>
<td>22, 263</td>
<td></td>
</tr>
<tr>
<td>défrichement</td>
<td>défrichement pour augmenter la surface cultivable</td>
<td>1</td>
<td>24, 265</td>
<td></td>
</tr>
<tr>
<td>gerbes</td>
<td>gerbes entreposées dans un grenier</td>
<td>3</td>
<td>68-70, 315-319</td>
<td></td>
</tr>
<tr>
<td>jardin</td>
<td>mention du jardin de la communauté</td>
<td>1</td>
<td>73, 319</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lupicin apporte le repas d'un moine malade au jardin</td>
<td>1</td>
<td>75, 321</td>
<td></td>
</tr>
<tr>
<td></td>
<td>pour le deuxième jour consécutif, Lupicin amène un moine malade dans le jardin</td>
<td>1</td>
<td>76, 323</td>
<td></td>
</tr>
<tr>
<td>moisson</td>
<td>risque de disette jusqu'à la prochaine moisson (même miracle raconté plusieurs fois)</td>
<td>3</td>
<td>68-70, 315-319</td>
<td></td>
</tr>
<tr>
<td>pré ou sols unis</td>
<td>les moines défrichent la forêt et en font des « prés unis »</td>
<td>2</td>
<td>24-25, 265-267</td>
<td></td>
</tr>
<tr>
<td>recoltes</td>
<td>médiocrité des récoltes car le sol est pauvre et soumis aux intempéries</td>
<td>1</td>
<td>22, 263</td>
<td></td>
</tr>
<tr>
<td></td>
<td>riches récoltes après changement de lieu des champs et essartage de la forêt</td>
<td>1</td>
<td>35, 279</td>
<td></td>
</tr>
<tr>
<td></td>
<td>abondance des récoltes une année</td>
<td>1</td>
<td>36, 279-281</td>
<td></td>
</tr>
<tr>
<td>semences</td>
<td>Romain amène des semences pour subvenir à ses besoins</td>
<td>1</td>
<td>10, 249</td>
<td></td>
</tr>
<tr>
<td>alimentation</td>
<td>aliment (indéterminé)</td>
<td>achat d'aliiments sur un marché de Rome par Agrippin</td>
<td>1</td>
<td>107, 351-353</td>
</tr>
<tr>
<td>bouillie</td>
<td>sur l'ordre de Lupicin, préparation d'une bouillie d'orge non tamisée sans sel ni huile (en guise de punition envers des frères trop gourmands)</td>
<td>1</td>
<td>37-38, 281-283</td>
<td></td>
</tr>
<tr>
<td></td>
<td>bouillie précédente qualifiée de « médiocre » et de « bouillie de l'épreuve »</td>
<td>1</td>
<td>39, 283</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lupicin refuse d'agrémenter sa bouillie de lait ou d'huile (mortification)</td>
<td>1</td>
<td>66, 313</td>
<td></td>
</tr>
<tr>
<td>chou</td>
<td>pousses de chou cru monté consommées par Lupicin (mortification)</td>
<td>1</td>
<td>102, 347</td>
<td></td>
</tr>
<tr>
<td>don (alimentaire)</td>
<td>interdiction pour les frères de conserver pour leur usage propre le moindre don apporté par leurs proches. Ils doivent remettre ces dons à l'abbé ou à l'économé (règle d'Oyend)</td>
<td>1</td>
<td>172, 425</td>
<td></td>
</tr>
<tr>
<td>eau</td>
<td>pain trempé dans l'eau utilisé comme nourriture par Lupicin</td>
<td>1</td>
<td>67, 313</td>
<td></td>
</tr>
<tr>
<td></td>
<td>mention d'un moine qui ne prend d'autre nourriture que des miettes de pain trempées dans l'eau</td>
<td>1</td>
<td>72, 319</td>
<td></td>
</tr>
<tr>
<td></td>
<td>eau mêlée de miel offerte à Lupicin alors âgé et malade</td>
<td>1</td>
<td>116, 361</td>
<td></td>
</tr>
<tr>
<td>famine, disette</td>
<td>devant le risque d'une disette imminente, Lupicin réalise un miracle</td>
<td>2</td>
<td>68, 315 ; 70, 317-319</td>
<td></td>
</tr>
<tr>
<td>farine</td>
<td>«(...) la farine dans son pot (...)»</td>
<td>1</td>
<td>69, 315</td>
<td></td>
</tr>
<tr>
<td>froment</td>
<td>risque de famine quand le froment manquera</td>
<td>1</td>
<td>69, 317</td>
<td></td>
</tr>
<tr>
<td>galette</td>
<td>dans les premières années de la fondation des monastères, les frères se contentaient de galettes grossières et substantielles lors de leurs déplacements</td>
<td>1</td>
<td>113, 359</td>
<td></td>
</tr>
<tr>
<td>herbe amère</td>
<td>herbes amères demandées par Lupicin pour lui « donner de l'appétit »</td>
<td>1</td>
<td>37, 281</td>
<td></td>
</tr>
<tr>
<td>huile</td>
<td>préparation sur l'ordre de Lupicin d'une bouillie d'orge non tamisée sans sel ni huile (en guise de punition envers des frères trop gourmands)</td>
<td>1</td>
<td>38, 281-283</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lupicin refuse d'agrémenter sa bouillie de lait ou d'huile (mortification)</td>
<td>1</td>
<td>66, 313</td>
<td></td>
</tr>
<tr>
<td></td>
<td>«(...) ni l'huile de son pot (...)» (suite du mot-clé «Farine »)</td>
<td>1</td>
<td>69, 315-317</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lupicin ajoute « une large ration d'huile » au repas d'un frère affaibli par un jeûne</td>
<td>1</td>
<td>75, 321</td>
<td></td>
</tr>
<tr>
<td>lait</td>
<td>autorisation par la règle de boire du lait</td>
<td>1</td>
<td>66, 313</td>
<td></td>
</tr>
</tbody>
</table>
Tabl. 43 (suite) : Thèmes abordés dans la *Vie des Pères du Jura*.

<table>
<thead>
<tr>
<th>thème</th>
<th>mots-clés</th>
<th>texte</th>
<th>mention</th>
<th>§, page</th>
</tr>
</thead>
<tbody>
<tr>
<td>alimentation</td>
<td>mets (indéterminé)</td>
<td>mets consommé par Oyend</td>
<td>1</td>
<td>131, 381</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mets (particuliers?) préparés pour les malades</td>
<td>1</td>
<td>171, 425</td>
</tr>
<tr>
<td></td>
<td>miel</td>
<td>eau mêlée de miel offerte à Lupicin alors âgé et malade</td>
<td>1</td>
<td>116, 361</td>
</tr>
<tr>
<td>nourriture</td>
<td>après l'incendie du monastère de bois, la nourriture ne manque pas (miracle)</td>
<td>extase d'Oyend pendant la lecture au réfectoire lui faisant oublier la nourriture</td>
<td>1</td>
<td>162, 413-415</td>
</tr>
<tr>
<td></td>
<td>bien que malade et sur le point de mourir, Oyend ne prend qu'un repas par jour</td>
<td>bien que malade et sur le point de mourir, Oyend ne prend qu'un repas par jour</td>
<td>1</td>
<td>169, 421-423</td>
</tr>
<tr>
<td></td>
<td>ornements</td>
<td>la consommation d'œufs est tolérée par la règle</td>
<td>1</td>
<td>175, 429</td>
</tr>
<tr>
<td></td>
<td>orge</td>
<td>préparation sur l'ordre de Lupicin d'une bouillie d'orge tamisée sans sel ni huile (en guise de punition envers des frères trop gourmands)</td>
<td>1</td>
<td>38, 281-283</td>
</tr>
<tr>
<td></td>
<td>pain</td>
<td>Lupicin mange du pain trempé d'eau (mortification)</td>
<td>1</td>
<td>67, 313</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lors d'une famine imminente, Lupicin demande à Dieu de pourvoir les frères en pain</td>
<td>1</td>
<td>69, 315-317</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mention d'un moine qui ne prend d'autre nourriture que des miettes de pain trempées dans l'eau</td>
<td>1</td>
<td>72, 319</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lupicin fait tremper le pain dans du vin pour un frère affaibli par un long jeûne</td>
<td>1</td>
<td>74, 321</td>
</tr>
<tr>
<td></td>
<td>rave</td>
<td>Lupicin se nourrit de « raves grossières des champs » (mortification)</td>
<td>1</td>
<td>102, 347</td>
</tr>
<tr>
<td></td>
<td>repas</td>
<td>Oyend ne prenait qu'un repas par jour</td>
<td>1</td>
<td>131, 381</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lecture publique pendant les repas (sous Oyend)</td>
<td>1</td>
<td>169, 421-423</td>
</tr>
<tr>
<td></td>
<td></td>
<td>repas pris à part pour les malades (sous Oyend)</td>
<td>1</td>
<td>171, 425</td>
</tr>
<tr>
<td></td>
<td>sel</td>
<td>préparation sur l'ordre de Lupicin d'une bouillie d'orge tamisée sans sel ni huile (en guise de punition envers des frères trop gourmands)</td>
<td>1</td>
<td>38, 281-283</td>
</tr>
<tr>
<td></td>
<td>soupe</td>
<td>soupe à l'eau claire pour Lupicin (mortification)</td>
<td>1</td>
<td>67, 313</td>
</tr>
<tr>
<td></td>
<td>vin</td>
<td>Lupicin ne boit pas de vin (mortification)</td>
<td>1</td>
<td>67, 313</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lupicin fait tremper le pain dans du vin pour un frère affaibli par un jeûne</td>
<td>1</td>
<td>75, 321</td>
</tr>
<tr>
<td></td>
<td>vivres</td>
<td>gerbes de céréales entreposées dans un grenier et considérées comme une réserve de vivres</td>
<td>1</td>
<td>70, 317-319</td>
</tr>
<tr>
<td>aménagement</td>
<td>canal</td>
<td>exhaussement d'un canal d'alimentation en eau alimentant un moulin (grande précision dans les termes et la technique de fabrication)</td>
<td>2</td>
<td>57-58, 301-303</td>
</tr>
<tr>
<td></td>
<td>canalisation en bois</td>
<td>eau alimentant le monastère et transportée par des canalisations en bois</td>
<td>1</td>
<td>7, 247</td>
</tr>
<tr>
<td></td>
<td>chemin</td>
<td>chemin menant à Genève, en dehors du monastère</td>
<td>2</td>
<td>153-155, 403-405</td>
</tr>
<tr>
<td></td>
<td>claies</td>
<td>mention de « claies du canal » du moulin</td>
<td>1</td>
<td>58, 303</td>
</tr>
<tr>
<td></td>
<td>foyer</td>
<td>le diable tire, une nut, « un tison du foyer »</td>
<td>1</td>
<td>53, 297-299</td>
</tr>
<tr>
<td></td>
<td></td>
<td>un diacre veille, la nuit, près d'un foyer</td>
<td>1</td>
<td>54, 309</td>
</tr>
<tr>
<td></td>
<td></td>
<td>foyer du monastère jurassien</td>
<td>1</td>
<td>65, 311-313</td>
</tr>
<tr>
<td></td>
<td>roue</td>
<td>roue du moulin</td>
<td>1</td>
<td>57, 301</td>
</tr>
<tr>
<td>animal</td>
<td>abeilles</td>
<td>mention symbolique d'abeilles</td>
<td>2</td>
<td>11, 251; 122, 371</td>
</tr>
<tr>
<td></td>
<td>bêtes sauvages</td>
<td>seuls êtres vivant auprès de l'ermitre Romain</td>
<td>1</td>
<td>12, 253</td>
</tr>
<tr>
<td></td>
<td>cerfs</td>
<td>bêtes vivant à proximité de l'ermitre Romain</td>
<td>1</td>
<td>9, 249</td>
</tr>
<tr>
<td></td>
<td>cheval</td>
<td>pour les déplacements aux premiers temps du monastère, les moines se déplaçaient à pied et non à cheval comme du temps d'Oyend</td>
<td>1</td>
<td>113, 357-359</td>
</tr>
<tr>
<td></td>
<td>chèvre</td>
<td>Oyend est vêtu d'un « vieux scapulaire en peau de chèvre »</td>
<td>1</td>
<td>127, 375-377</td>
</tr>
<tr>
<td></td>
<td>daims</td>
<td>bêtes vivant à proximité de l'ermitre Romain</td>
<td>1</td>
<td>9, 249</td>
</tr>
<tr>
<td></td>
<td>mouton</td>
<td>peau de mouton utilisée comme une sorte de couverture</td>
<td>1</td>
<td>74, 319-321</td>
</tr>
<tr>
<td></td>
<td>quadrupèdes variés</td>
<td>Lupicin vêtu d'une tunique confectionnée de peaux de quadrupèdes divers</td>
<td>1</td>
<td>63, 309-311</td>
</tr>
<tr>
<td></td>
<td>serpent</td>
<td>énorme serpent, désigné plus loin sous le terme « vipère », caché dans la paille (en fait, diable déguisé)</td>
<td>1</td>
<td>57, 303</td>
</tr>
</tbody>
</table>
Tabl. 43 (suite): Thèmes abordés dans la *Vie des Pères du Jura*.

<table>
<thead>
<tr>
<th>thème</th>
<th>mots-clés</th>
<th>texte</th>
<th>mention</th>
<th>§, page</th>
</tr>
</thead>
<tbody>
<tr>
<td>architecture</td>
<td>atrium</td>
<td>atrium de la basilique Saint-Martin de Tours</td>
<td>2</td>
<td>89, 333-335; 90, 335-337</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mention d’un « atrium extérieur » (basilique de Rome)</td>
<td>1</td>
<td>107, 351-353</td>
</tr>
<tr>
<td>basilique</td>
<td></td>
<td>construction par Romain et Lupicin de la basilique pour femmes de La Balme</td>
<td>1</td>
<td>25, 265-267</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Romain se rend à la basilique des saints d’Agaune</td>
<td>1</td>
<td>44, 287-291</td>
</tr>
<tr>
<td></td>
<td></td>
<td>basilique de La Balme, lieu de sépulture de Romain</td>
<td>1</td>
<td>61, 305-307</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Saint-Martin de Tours</td>
<td>1</td>
<td>89, 333</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Saint-Pierre de Rome</td>
<td>3</td>
<td>104-105, 349-351</td>
</tr>
<tr>
<td>cabane</td>
<td></td>
<td>de Romain</td>
<td>1</td>
<td>12, 253</td>
</tr>
<tr>
<td></td>
<td></td>
<td>de Sabinien</td>
<td>2</td>
<td>54, 299; 56, 301</td>
</tr>
<tr>
<td>cachot</td>
<td></td>
<td>d’Agrippin, à Rome</td>
<td>2</td>
<td>102, 347-349; 105, 351</td>
</tr>
<tr>
<td>caverne/grotte</td>
<td></td>
<td>demeure de deux lépreux</td>
<td>1</td>
<td>25, 265-267</td>
</tr>
<tr>
<td>architecture</td>
<td>cellule</td>
<td>des moines</td>
<td>9</td>
<td>28, 271; 52, 297-299; 81, 327; 128, 377-379; 161-163, 413-415; 169-170, 421-423; 172-173, 425-427</td>
</tr>
<tr>
<td></td>
<td></td>
<td>des frères</td>
<td>1</td>
<td>125, 375</td>
</tr>
<tr>
<td>cimetière</td>
<td></td>
<td>du monastère jurassien</td>
<td>1</td>
<td>75, 321</td>
</tr>
<tr>
<td>dépense</td>
<td></td>
<td>du monastère jurassien</td>
<td>2</td>
<td>170, 423; 178, 367-369</td>
</tr>
<tr>
<td>dortoir</td>
<td></td>
<td>des moines sous Oyend</td>
<td>1</td>
<td>135, 385</td>
</tr>
<tr>
<td>église</td>
<td></td>
<td>du monastère jurassien</td>
<td>1</td>
<td>95, 341</td>
</tr>
<tr>
<td>grenier</td>
<td></td>
<td>du monastère jurassien</td>
<td>2</td>
<td>68-70, 315-317</td>
</tr>
<tr>
<td>hôtellerie</td>
<td></td>
<td>du monastère jurassien</td>
<td>1</td>
<td>28, 271</td>
</tr>
<tr>
<td>hutte</td>
<td></td>
<td>deux jeunes clercs de Nyon (Suisse) se construisent une hutte près de Romain</td>
<td>1</td>
<td>13, 255</td>
</tr>
<tr>
<td>loge ou logette</td>
<td></td>
<td>des moines</td>
<td>2</td>
<td>16, 257; 53, 299</td>
</tr>
<tr>
<td></td>
<td></td>
<td>des malades, à Rome</td>
<td>1</td>
<td>104, 349</td>
</tr>
<tr>
<td>maison</td>
<td></td>
<td>maison paternelle d’Oyend</td>
<td>2</td>
<td>121-122, 369-371</td>
</tr>
<tr>
<td></td>
<td></td>
<td>monastère</td>
<td>1</td>
<td>95, 341</td>
</tr>
<tr>
<td>moulin</td>
<td></td>
<td>du monastère jurassien</td>
<td>2</td>
<td>52-53, 297-299; 57, 301-303</td>
</tr>
<tr>
<td>oratoire</td>
<td></td>
<td>signalant le lieu initial de la retraite de Romain</td>
<td>1</td>
<td>13, 255</td>
</tr>
<tr>
<td></td>
<td></td>
<td>du monastère jurassien</td>
<td>6</td>
<td>65, 311-313; 79, 325-327; 130, 379; 166, 417; 170, 423; 177, 431</td>
</tr>
<tr>
<td>porte</td>
<td></td>
<td>de la cabane de Sabinien</td>
<td>1</td>
<td>54, 299</td>
</tr>
<tr>
<td></td>
<td></td>
<td>de la grotte des lépreux</td>
<td>1</td>
<td>45, 291</td>
</tr>
<tr>
<td>portique</td>
<td></td>
<td>du Vatican</td>
<td>1</td>
<td>140, 349</td>
</tr>
<tr>
<td>prison</td>
<td></td>
<td>à Rome</td>
<td>4</td>
<td>102-103, 347-349; 105, 351; 107, 353</td>
</tr>
<tr>
<td>quartier de prière</td>
<td></td>
<td>du monastère jurassien (sous Oyend)</td>
<td>1</td>
<td>129, 271</td>
</tr>
<tr>
<td>sacristie</td>
<td></td>
<td>du monastère jurassien (sous Oyend)</td>
<td>2</td>
<td>135, 385; 161, 413</td>
</tr>
<tr>
<td>sanctuaire</td>
<td></td>
<td>enceinte du sanctuaire d’Izernore</td>
<td>1</td>
<td>120, 367</td>
</tr>
<tr>
<td>toit</td>
<td></td>
<td>pauvre toit de la loge du Sabinien</td>
<td>1</td>
<td>53, 299</td>
</tr>
<tr>
<td>vestibule</td>
<td></td>
<td>du monastère jurassien</td>
<td>1</td>
<td>90, 337</td>
</tr>
<tr>
<td>commerce</td>
<td>papyrus</td>
<td>d’Égypte</td>
<td>1</td>
<td>142, 391-393</td>
</tr>
<tr>
<td></td>
<td>sel de cuisine</td>
<td>que les moines vont chercher sur les bords de la Méditerranée, à cause des assauts des Alamans</td>
<td>1</td>
<td>157, 407-409</td>
</tr>
</tbody>
</table>
Bibliographie générale

ADJ: Archives départementales du Jura, Dossier 7F76XX.

Table ronde organisée par l'Institut d’archéologie et d’histoire de l’Antiquité, Université Lyon 2, 16-17 nov. 2000. Lyon: Université Lumière-Lyon 2, Collection Archéologie et histoire de l’Antiquité, 6, 2002, p. 69-76, 9 pl. h. t.

Craig et al. 2007: Craig (O. E.), Forster (M.), Andersen (H.), Koch (E.), Crombé (P.), Milner (N. J.), Stern (B.), Bailey (G. N.), Heron (C. P.). Molecular and Isotopic Demonstration of the Processing of Aquatic Products in Northern European Prehistoric Pottery. Archaeometry, 49, 2007, p. 135-152.

Dudd et al. 1999: Dudd (S. N.), Evershed (R. P.), Gibson (A. M.). Evidence for Varying Patterns of Exploitation of Animal Products in Different Prehistoric Pottery Traditions Based on

Fluzin 2002: Fluzin (P.). La chaîne opératoire en sidérurgie: matériaux archéologiques et procédés. Apports des études...

Humbert 2006: Humbert (S.). Le phasage et la production découverte dans le four de potier de Mandeure rue de
Bibliographie générale

Mangin 1994 : Mangin (M.) dir. La Sidérurgie ancienne de l'est de la France dans son contexte européen : archéologie et archéométrie.
Bibliographie générale

Fig. 1: Répartition spatiale du mobilier dans le secteur du bâtiment artisanal (DAO D. Billoin).
Fig. II: Les aspects de pâtes des céramiques (clichés P. Haut, DAO D. Billoin).
Fig. III: Les différents aspects de pâte des céramiques en vue macroscopique, avec des inclusions de tailles variées (clichés A. Schmitt).
Fig. IV: Élément de vitre n° 16 à 18, perle en verre (C. Munier; DAO D. Billoin; clichés D. Billoin).
Fig. V: Clichés et dessins des verres plats sélectionnés, excepté ceux de Pratz présentés infra (DAO et clichés I. Pactat).
Fig. VI: Clichés des lames minces des roches en pierre ollaire (I. Serneels).
Fig. VII: Vues microscopiques en lumière naturelle et en lumière polarisée illustrant la texture et les principaux minéraux des échantillons Pratz 4 sous-groupe 1, Pratz 6 sous-groupe 2 et Pratz 3 sous-groupe 3 (I. Serneels).
Fig. VIII: Vue au microscope polarisant des grains bleuâtre (azurite ?) présents dans les fissures dues au chauffage extrême des objets (I. Serneels).
Fig. IX : Lame mince du grès grossier de Pratz (cliché A. Milleville) et vues macroscopiques du grès grossier ocre, du grès grossier gris et du basalte (clichés P. Haut).
Fig. XI: 1: minerai brut ; 2-3: scories d’aspect coulé ; 4-5: éléments de parois (clichés P. Haut).
Fig. XII: Les différents faciès de culots (cliché P. Haut).
Fig. XIII : Les différents faciès de culots (cliché P. Haut).
Fig. XIV: Les déchets métalliques en fer (cliché P. Haut).
Fig. XV: Les déchets sous forme de masses complexes ou informes (cliché P. Haut).
Fig. XVI: Observations macroscopique du culot n° 52 (M. Berranger).
1 globules de métal et petits éclats aux angles vifs ; pas de traces de réoxydation à chaud

2 petit éclat de métal partiellement corrodié

3 battiture en cours de dissolution dans la matrice

4 matrice base silice avec longues lattes de fayalite

5 battiture plate en cours de dissolution dans la matrice base silice

6 battiture globulaire aux surfaces planes

7 battitures globulaires

8 épaisses battitures plates

Fig. XVII: Observations macroscopique du culot n° 12 (M. Berranger).
Fig. XVIII: Observations macroscopique du culot n° 8 (M. Berranger).
Fig. XIX: Observations macroscopique du culot n° 63 (M. Berranger).
Fig. XX : Observations macroscopique du culot n° 56 (M. Berranger).
Fig. XXI: Observations macroscopique de l’objet O1.9 (M. Berranger).
L'établissement de Pratz le Curtillet

Fig. XXII : Observations macroscopique de l'objet Oi.20 (M. Berranger).
L'établissement de Pratz le Curtillet

Fig. XXIII: Observations macroscopique de l'objet Oi.22 (M. Berranger).
L’établissement de Pratz le Curtillet

Fig. XXIV: Observations macroscopique de l’objet Oi.1 (M. Berranger).

1. Concentration d’inclusions réparties en périphérie de grains
2. Inclusion majoritairement siliceuse fortement écrasée par le martelage
3. Superposition de soudures de feuilles de ferrite et d’acier
4. Soudure ferrite et acier à environ 0,4/0,5 % C
5. Soudure acier 0,1 % C / acier 0,2 à 0,3 % C
Fig. XXV: Observations macroscopique de l’objet Oi.216 (M. Berranger).
L'établissement de Pratz le Curtillet

Fig. XXVI: Observations macroscopique de l’objet Oi.241 (M. Berranger).
L’établissement de Pratz le Curtillet

Fig. XXVII: Observations macroscopique de l’objet Oi.13 (M. Berranger).
XXVIII

L’établissement de Pratz le Curtillet

1. alignement de petites inclusions majoritairement siliceuses aux angles vifs

2. inclusion d’amorphe allongée aux angles vifs

3. inclusion majoritairement siliceuse, aux angles vifs, fortement écrasée

4. soudure dans un acier à 0,8 % C

5. inclusion dans un acier à 0,8 % C

6. acier à 0,6 % C

Fig. XXVIII : Observations macroscopique de l’objet Oi.124 (M. Berranger).
L’établissement de Pratz le Curtillet

Fig. XXIX: Observations macroscopique de l’objet Oi.155 (M. Berranger).
Fig. XXX : Déchets d’alliage cuivreux (cliché P. Haut).
L’établissement de Pratz le Curtillet

Un domaine mérovingien dans les hautes terres jurassiennes (fin vie-viie siècle)

Parmi les tout premiers habitats du haut Moyen Âge étudiés en Franche-Comté, l’établissement de Pratz le Curtillet se distingue par son implantation dans les hautes terres jurassiennes, longtemps réputées comme reculées et inhospitalières. L’envergure des travaux archéologiques sur les 16 hectares explorés du plateau du Lizon et la qualité des vestiges font aujourd’hui encore exception.

Un imposant édifice en pierre de 16 m sur 13 flanqué d’une annexe constitue la partie résidentielle du domaine, tout en abritant fourrage et bétail, alors que le second bâtiment accueille une forge. Les équipements domestiques et artisanaux livrent une ample documentation sur les conditions de vie de cette petite communauté de statut élevé, lié à son implication dans l’économie du fer. Les études engagées à différentes échelles dans un territoire où s’installe une communauté monastique parmi les plus précoces de Gaule, non loin d’un itinéraire de franchissement du massif, contribuent à poser de précieux jalons pour cette période.

David Billoin, archéologue à l’Inrap, est rattaché à l’UMR 5140 Archéologie des Sociétés Méditerranéennes de l’université Paul-Valéry Montpellier 3. Spécialiste de l’habitat perché et du peuplement entre Antiquité tardive et haut Moyen Âge, il a publié de nombreux articles et contribue à plusieurs projets collectifs de recherches sur l’époque mérovingienne.