GIS and vector cadastral map: a tool to detect and study roman cadastral frames
Maxime Seguin

To cite this version:
Maxime Seguin. GIS and vector cadastral map: a tool to detect and study roman cadastral frames. 3rd International Landscape Archaeology Conference 2014, Sep 2014, Rome, Italy. 2014. <hal-01487033>

HAL Id: hal-01487033
https://hal-inrap.archives-ouvertes.fr/hal-01487033
Submitted on 10 Mar 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0 International License
GIS and vector cadastral map: a tool to detect and study roman cadastral frames

The french Rhône valley has traces of ancient roman parcels, testified by antique land registers, also called "Orange cadastre". This organization was highlighted on the left bank of the river. It seems to extend to the other side, in the Tave and Cèze valleys. All on the left bank of the river. It seems to extend to the "Orange cadastre". This organization was highlighted. These documents are selective. The tool used in this study is the histogram of directions. It consists in calculating the azimuth of each parcel boundary and drawing a histogram: the number of boundaries or their total length are shown as a function of azimuth. The interests of working with the cadastral are all information contained in these documents, whose precision allows a detailed study of cadastral frames. This method was first validated on previously studied areas and then extended to the Cèze and Tave lower valleys. This helped to detect the presence of "Orange cadastre" in these two valleys, where the method by optical filtering had not delivered convincing results. The use of these vector data for the detection of ancient cadastral frames remains to this day unique in France. However its implementation is simple and permits a detailed study of the boundaries structure. The results are encouraging and allow considering new approaches. It would be interesting to combine elevation and topographic data as well as ancient "Napoleonic cadastre", in the aim to eliminate 19th and 20th century boundaries. This will be the next step of this work.

References

1. Location map
 A. Antique land registers and the study area.
 B. "Orange A" cadastral registers.
 C. "Orange B" cadastral registers (blue).
 D. "Orange C" cadastral registers (green).
 E. "Orange D" cadastral registers (yellow).
 F. Cèze and Tave valley.

2. Optical filtering
 «Orange B» orientations filtering from aerial photographies between Orange (Vaucluse) and Diohene (Dol when)
 A. Aerial photographs (IGN 1979 [49], n° 1 and 2, 1970, 399 n°13 and 16).
 B. Obtained «Orange B» results and paths resulting.

3. Documentations
 A. Aerial photographs (BD Orthono®, © IGN).
 B. Topographic maps (carto®, © IGN).
 C. Cadastral maps (BDParcellaire®, © IGN).

4. Azimuth formula

5. Histogram of directions
 Number of boundaries function of azimuth in the Cèze and Tave valleys.
 A. Assessment
 B. Pentrem's results (around Bagnols-sur-Cèze).
 C. Gallo-roman other the Rhône.

6. Results
 a. Numerical results for B, C and D directions
 b. Summary of results