Skip to Main content Skip to Navigation
Journal articles

Color Variability Constrains Detection of Geometrically Perfect Mirror Symmetry

Abstract : Symmetry in nature is a result of biological self-organization, driven by evolutionary processes. Detected by the visual systems of various species, from invertebrates to primates, symmetry determines survival relevant choice behaviors and supports adaptive function by reducing stimulus uncertainty. Symmetry also provides a major structural key to bio-inspired artificial vision and shape or movement simulations. In this psychophysical study, local variations in color covering the whole spectrum of visible wavelengths are compared to local variations in luminance contrast across an axis of geometrically perfect vertical mirror symmetry. The chromatic variations are found to delay response time to shape symmetry to a significantly larger extent than achromatic variations. This effect depends on the degree of variability, i.e., stimulus complexity. In both cases, we observe linear increase in response time as a function of local color variations across the vertical axis of symmetry. These results are directly explained by the difference in computational complexity between the two major (magnocellular vs. parvocellular) visual pathways involved in filtering the contrast (luminance vs. luminance and color) of the shapes. It is concluded that color variability across an axis of symmetry proves detrimental to the rapid detection of symmetry, and, presumably, other structural shape regularities. The results have implications for vision-inspired artificial intelligence and robotics exploiting functional principles of human vision for gesture and movement detection, or geometric shape simulation for recognition systems, where symmetry is often a critical property.
Complete list of metadata

https://hal.archives-ouvertes.fr/hal-03702983
Contributor : Birgitta Dresp Connect in order to contact the contributor
Submitted on : Thursday, June 23, 2022 - 3:12:08 PM
Last modification on : Friday, June 24, 2022 - 10:56:08 AM

File

computation-10-00099-v2.pdf
Publisher files allowed on an open archive

Identifiers

Citation

Birgitta Dresp-Langley. Color Variability Constrains Detection of Geometrically Perfect Mirror Symmetry. Computation, MDPI, 2022, 10 (6), pp.99. ⟨10.3390/computation10060099⟩. ⟨hal-03702983⟩

Share

Metrics

Record views

12

Files downloads

2